Электричество | Заметки электрика. Совет специалиста

Сибирский государственный медицинский университет. Белки, их строение и функции. Функции белков Цис сер гли лиз арг

2. Процесс превращения аминокислоты в кетокислоту в присутствии фермента оксидазы называется

1) трансаминирование

3) окислительное дезаминирование

4) гидроксилирование

5) неокислительное дезаминирование

3. В ряду аминокислот аланином является

1)
2)
3)
4)
5)

4. Трипептиду гли-цис-фен соответствует формула

5. Ароматической аминокислотой является

1) треонин

3) триптофан

5) тирозин

6. Пептидной связью является

7. Природные аминокислоты хорошо растворимы в воде, т.к. содержат

1) бензольное кольцо

2) гетероциклические кольца

3) аминогруппу и карбоксильную группу

4) тиогруппу

5) гидроксильную группу

8. Трипептиду ала-тре-вал соответствует формула

9. Вторую аминогруппу в радикале содержит кислота

1) аспарагиновая

3) триптофан

5) метионин

10. Гетероциклической аминокислотой является

1) треонин

2) фенилаланин

3)глутаминовая

4) гистидин

5) цистеин

11. Специфической реакцией α-аминокислот является

1) образование солей

2) отщепление аммиака

3) взаимодействие с ДНФБ

4) образование лактама

5) образование дикетопиперазина

12. Трипептиду фЕН-лиз-глу соответствует формула

13. Двухосновной аминокислотой является

3) метионин

4) триптофан

5) глутаминовая

14. Реакцией взаимопревращения в организме аминогруппы и карбонильнй группы кислот под действием фермента транс-аминазы является реакция

1) гидроксилирования

2) восстановительного аминирования

3) переаминирования

5) окислительного дезаминирования

15. В аминокислотах защиту аминогруппы проводят реакцией взаимодействия аминокислоты с

1) PCl 5
2)
3) CH 3 Cl
4) C 2 H 5 OH
5) HCl

16. Трипептиду сер-цис-фен соответствует формула

17. В растворах аминокислоты реакция среды

3) нейтральная

3) слабощелочная

4) слабокислая

5) зависит от числа амино- и карбоксильных групп

18. Алифатической аминокислотой является

1) гистидин

3) триптофан

5) фенилаланин

19. В ряду следующих аминокислот гистидином является

20. общая формула дипептидов

21. Процесс превращения аминокислоты в непредельную кислоту, протекающий в присутствии ферментов, называется

1) трансаминированием

3) гидроксилированием

4) окислительным дезаминированием

5) неокислительным дезаминированием

22. Аминокислоте тирозин соответствует формула

23. Только гидроксилсодержащие аминокислоты представлены в ряду

1) вал-цис-лиз

2) тир-тре-сер

3) гис-мет-лиз

4) ала-вал-фал

5) сер-лиз-три

24. Трипептиду асп-мет-лиз соответствует формула

25. Аминоспирт образуется в результате декарбоксилирования

26. Дикетопиперазину соответствует формула

27. Только алифатические аминокислоты, не содержащие в радикале дополнительных функциональных групп, содержатся в ряду

1) гис-ала-фал

2) вал-лей-илей

3) вал-тре-асп

4) гли-глу-тир

5) цис-мет-тре

28. Трипептиду гис-лей-фен соответствует формула

29. Кадаверин или 1,5-диаминпентан (трупный яд) образуется в результате реакции декарбоксилирования

1) изолейцина

2) лейцина

4) метионина

5) гистидина

30. При ацилировании валина хлористым ацетилом образуется

31. Аминокислоты не реагируют с

32. Трипептиду мет-лиз-лей соответствует формула

33. Реакцией дезаминирования In vitro является взаимодействия аминокислоты с

1) этанолом

2) соляной кислотой

3) азотной кислотой

4) азотистой кислотой

34. Дикетопиперазин образуется при взаимодействии

1) аминокислоты с pcl 5

2) двух аминокислот при нагревании

3) аминокислоты с NaOH

4) аминокислот с HCl

5) аминокислот при нагревании с Ba(OH) 2

35. Аминокислоте лизин соответствует формула

36. В состав аминокислот не входят

4) углерод

5) кислород

37. Трипептиду асн-тре-сер соответствует формула

38. Путресцин или 1,4-диаминобутан (трупный яд) образуется при декарбоксилировании

39. Аминоспирт образуется в результате декарбоксилирования

1) гистидина

2) тирозина

3) треонина

5) лейцина

40. При полном гидролизе пептидов в кислой среде образуется смесь

1) аминокислот

2) сложных эфиров и аминокислот

3) солей первичных аминов

4) аминов и аминокислот

5) дикетопиперазинов

41. Трипептиду ала-гли-глу соответствует формула

42. Активирование карбоксильной группы аминокислоты с защищенной аминогруппой проводят реакцией взаимодействия с

43. Количество моль KOH, необходимое для полной нейтрализации аспарагиновой кислоты, равно

5) с КОН реакция не идет

44. Трипептиду фен-ТРЕ-глу соответствует формула

45. Фтороводород выделяется при взаимодействии аминокислоты с

46. Биполярному иону валина соответствует формула

47. Реакция переаминирования протекает в организме при участии фермента

2) оксидазы

3) трансаминазы

5) ацетилкофермента А

48. Трипептиду мет-глу-ала соответствует формула

49. Гетероциклической аминокислотой является

3) тирозин

4) фенилаланин

5) изолейцин

50. При ацетилировании лейцина хлористым ацетилом образуется

1) цис, глу

2) гли, мет

3) глу, вал

4) цис, мет

5) три, тре

52. Трипептиду фен-гис-лей соответствует формула

53. Путресцин (1,4-диаминобутан) или трупный яд, образуется при декарбоксилировании

2) треонина

3) гистидина

4) изолейцина

5) орнитина

54. Аминокислотой с активированной карбоксильной группой является

55. Дикетопиперазин серина представлен формулой

56. Трипептиду ала-фен-тир соответствует формула

57. При определении числа аминогрупп в аминокислотах по методу Ван-Слайка используют

58. Биполярный ион лизина представлен формулой

59. Амфотерность аминокислот объясняется наличием в их молекулах

1) карбоксильной группы

2) аминогруппы

3) карбоксильной и аминогрупп

4) карбоксильной и тиольной группы

5) аминогруппой бензольного кольца

60. Трипептиду вал-мет-асп соответствует

13.. За счет каких связей может образоваться сополимер из двух нижепредставленных пептидов?

а) ала-мет-арг-цис-ала-гли-сер-гли-цис-тре;

б) лиз-глу-арг-цис-арг-гли-тре-сер-лиз-тре-глу-сер.

14. Как, используя биуретовый метод определения белка и сульфат аммония, установить соотношение между альбуминами и глобулинами сыворотки крови?

15. Отношение количества альбуминов к количеству глобулинов в сыворотке крови больного равно 1,5. Рассчитайте содержание глобулинов, если концентрация альбуминов равна 5,0 г%.

16. Назовите две основные конфигурации белковой молекулы и укажите различия между ними.

17. На каком уровне пространственной организации различают белки глобулярные и фибриллярные?

18. Назвать важнейшие группы основных белков.

19. Почему протамины и гистоны отличаются основным характером?

20. Почему протамины и гистоны коагулируют при сильном нагревании только в сильно щелочной среде?

ЗАНЯТИЕ 3 «Химия сложных белков. Определение компонентов фосфо- и нуклеопротеидов»

Цель занятия : ознакомиться с классификацией и структурой сложных белков, в особенности нуклеопротеидов, которым принадлежит ведущая роль в хранении и передаче генетической информации (ДНК и РНК), а также с важнейшим хромопротеидов (гемоглобином).

Студент должен знать :

1. Классы сложных белков, принцип их деления на классы, принцип номенклатуры

2. Химическую природу простетических групп сложных белков.

3. Компоненты простетической группы нуклеопротеидов и хромо­про­теи­дов (в частности, гемоглобина).

4. Пространственную организацию нуклеиновых кислот.

5. Различия в составе и структуре РНК и ДНК

6.Функции ДНК и РНК, виды РНК, их локализацию.

7. Простетическую группу гемоглобина, её компоненты, роль железа в составе гема.

8. Факторы, воздействие которых может вызывать изменения структуры ДНК с информационными последствиями.

Студент должен уметь :

1. Построить (схематически) комплементарную цепь к участку заданного фрагмента одной из цепей ДНК.

2. Определить по результатам качественного анализа гидролизата нук­леи­новых кислот, подвергалась гидролизу ДНК или РНК

3.Различать виды гемоглобина и использовать принятые для них обозначения (оксигемоглобин, восстановленный гемоглобин, карбоксиге­мо­глобин и т.д.

4. Найти ошибки в представляемых для оценки отрезках якобы компле­мен­­тарных цепей ДНК

Студент должен получить представление : о преимущественной ло­кА­лизации в организме человека сложных белков, их биологическом зна­чении, об угрозах, которыми являются для существования видов мута­генные воздействия.

Аудиторная работа

Лабораторная работа (Определение компонентов фосфо-

И нуклеопротеидов)

1. Выделение казеина из молока. Казеин (один из фосфопротеидов) содержится в молоке в виде растворимой кальциевой соли, которая при подкислении распадается, и казеин выпадает в осадок. Избыток кислоты мешает осаждению, так как при значениях рН ниже 4,7 (изоэлектрическая точка казеина) молекулы белка перезаряжаются, и казеин вновь переходит в раствор.

Ход работы. К 2 мл молока добавить равный объем дистиллированной воды и 2 капли 10%-ной уксусной кислоты. Казеин, выпадающий в виде хлопьев, собрать на фильтре и промыть водой.

Гидролиз нуклеопротеидов

Ход работы. В круглодонную колбу поместить 1 г дрожжей, добавить 20 мл 10%-ного раствора серной кислоты и столько же дистиллированной воды. Колбу закрыть пробкой с обратным холодильником и кипятить под тягой 1,5 ч при слабом нагревании. Жидкость охладить, довести дистиллированной водой до исходного объема, фильтровать. Фильтрат использовать для следующих качественных реакций:

а) биуретовая реакция (для обнаружения полипептидов). К 5 каплям полученного гидролизата прибавить 10 капель 10%-ного раствора едкого натра и 1 каплю 1%-ного раствора сернокислой меди. Жидкость окра­шивается в розовый цвет;

б) серебряная проба (для обнаружения пуриновых оснований). К 5 каплям гидролизата прилить 5 капель 2%-го аммиачного раствора азот­нокислого серебра. Через 3-5 мин выпадает небольшой бурый осадок серебряных соединений пуриновых оснований;

в) качественная реакция Молиша (для обнаружения пентозной группировки). К 10 каплям гидролизата прилить 2 - 3 капли 1%-ного раст­вора тимола в этаноле, перемешать и по стенке опустить равный объем концентрированной серной кислоты - отчетливое красное кольцо;

г) молибденовая проба (для обнаружения фосфорной кислоты). К 5 каплям гидролизата прилить 5 капель молибденового реактива и кипятить несколько минут. Появляется лимонно-желтое окрашивание, а при охлаж­дении - желтый кристаллический осадок комплексного соединения фосфорномолибденовокислого аммония.

Дать обоснованные ответы предложенные ниже задания:

1. Какие структурные компоненты входят в состав ДНК? В какой пос­ледо­вательности связаны они между собой?

2. Построить комплементарную цепь к участку. представленного ниже фрагмента ДНК (- А - Г - Г - Ц - Т- Г-Т) так, чтобы образовавшаяся цепь представляла собой фрагмент РНК:

3. Построить комплементарную цепь к участку одной из цепей ДНК, представленному ниже:

-А - Г - Г - Ц - Т -

: - : - : - : - :

-? - ? - ? - ? - ? -

4.Найдите ошибки в представленном ниже фрагменте ДНК:

-Т - У - А - У - Ц - Т - Т - Г-

: -: - : - : : : : :

А - А - Т - А - Г - А - А - У-

5. Олигонуклеотид гидролизовали двумя способами. В первом случае в гидролизате определили мононуклеотиды А, Г, Ц и Т (последний находится в гидролизате в количестве, превышающем остальные в 2 раза), а также динуклеотиды Г - А, А - Т и Т - Т . Во втором случае, наряду со свободными нуклеотидами нашли динуклеотид Г - Ц .

Определите последовательность нуклеотидов в исходном продукте?

6. Исследуемый раствор обнаруживает положительную биуретовую реакцию, образует осадок при кипячении и добавлении концентри­рованных минеральных кислот, а также сульфосалициловой кислоты.

Составить план исследования, цель которого - выяснить, находятся в растворе простой или сложный белок. Если обнаружится сложный белок, как установить (или исключить), что он является гемоглобином.

7. Объяснить, на чем основано деление сложных белков на классы.

8. Дать краткую характеристику всех классов сложных белков.

9. Запомнить структурные формулы простетических групп нуклеиновых кислот.

10. Охарактеризовать азотистые основания, входящие в состав нуклеиновых кислот и перечислить различия между ДНК и РНК (по локализации, структуре, функциям).

11. Назвать минимальный информационный элемент в структуре ДНК и РНК.

12. Усвоить, как реализуется роль ДНК и РНК как источников информации.

13. Назвать две подгруппы хромопротеидов и различия между ними.

14. Закрепить представление о структуре гемоглобина (изучить компоненты белковой части и компоненты гема, а также их роль в основной функции гемоглобина).

ЗАНЯТИЕ 4 (итоговое)

При подготовке к итоговому занятию проконтролировать усвоены ли Вами раздел «Строение и функции белков» с помощью следующих вопросов (при подготовке использовать материалы лекций и учебники):

1. Сформулировать понятие «Жизнь», включая в определение все элементы, являющиеся предметом биохимии.

2. Определить предмет биохимии и перечислить вопросы, которыми занимается эта наука.

3. Назвать важнейшие надмолекулярные образования живого и группы молекул, их составляющие

4. Дать определения класса «Белки»

5. ­Дать определение класса «Аминокислоты».

6. Написать структурные формулы всех трипептидов, которые можно построить из гистидина, аланина и валина.

7. Какие из приведенных ниже пептидов являются кислыми, основными или нейтральными и указать общий электрический заряд каждого из них.pro-ser-ser; ala-pro-leu-thr; met-gly-ala; glu-his-ser; cys-lys-arg, glu-arg-lys; his-glu.

8. Перечислить известные вам подходы к классификации белков

9. Назвать группы белков, различающиеся по составу.

10. Назвать группы белков, различающиеся по трехмерной структуре.

11. Назвать группы сложных белков.

12. Продолжить фразу «Потеря нативной конформации под воздействием химических, физических и других факторов без нарушения аминокислотной последовательности - это.........»

13. Перечислить типы химических связей, разрушающихся при денатурации.

14. Перечислить в логической последовательности действия, необходимые для выделения белков из тканей.

15. Изобразить структурные формулы азотистых оснований, входящих в состав мононуклеотидов.

16. Изобразить структурные формулы АМФ, ГМФ, ЦМФ, ТМФ и УМФ.

17. Изобразить способ связи между мононуклеотидами в полинуклеотиде.

18. Назвать различия между ДНК и РНК по составу, структуре, локализации и функции.

19. К какому типу белков относится гемоглобин?

20. Назвать структурные особенности глобина.

21. Изобразить структурную формулу гема, назвать связи между гемом и глобином.

22. Чем обусловлено многообразие функций белков?

23. Перечислить биологические функции белков.

Тема: «Природа и свойства ферментов» (занятия 5-9)

Цель: изучить химическую природу, функции и свойства биологических катализаторов – ферментов.

Значение темы. Обмен веществ – обязательная и важнейшая особенность живых организмов – слагается из множества разнообразных химических реакций, в которые вовлекаются соединения, поступающие в организм извне и соединения, имеющие эндогенное происхождение. В процессе изучения данного раздела дисциплины усваивается то, что все химические реакции в живом протекают при участии катализаторов, что катализаторы в живом (ферменты или энзимы) являются веществами белковой природы, что свойства ферментов, их поведение зависит от характеристик среды.

При изучении этого раздела приобретаются также сведения о том, как в целостном организме регулируется активность ферментов, и создаются общие представления о связи ряда патологических процессов с изменением активности или количества ферментов, сведения о принципах количественной характеристики ферментов, об их использовании в диагностических и терапевтических целях.

Пептиды ‒ природные или синтетические соединения, молекулы которых построены из остатков α-аминокислот, соединенных пептидными (амидными) связями. Пептиды могут содержать также неаминокислотную компоненту. По числу аминокислотных остатков, входящих в молекулы пептидов, различают дипептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до десяти аминокислотных остатков, называются олигопептидами , содержащие более десяти аминокислотных остатков – полипептидами . Природные полипептиды с молекулярной массой более 6000 называются белками.

Аминокислотный остаток пептидов, несущий свободную α-аминогруппу, называется N-концевым, а остаток, несущий свободную α-карбоксильную группу – С-концевым. Название пептида образуется из названий входящих в его состав аминокислотных остатков, перечисляемых последовательно, начиная с N-концевого. При этом используют тривиальные названия аминокислот, в которых суффикс "ин" заменяется на "ил". Исключение составляет C-концевой остаток, название которого совпадает с названием соответствующей аминокислоты. Все аминокислотные остатки, входящие в пептиды, нумеруются, начиная с N-конца. Для записи первичной структуры пептида (аминокислотной последовательности) широко используют трех- и однобуквенные обозначения аминокислотных остатков (например, Ala-Ser-Asp-Phe-GIy – это аланил-серил-аспарагил-фенилаланил-глицин).

Отдельные представители пептидов

Глутатион - трипептид -глутамилцистеинилглицин, содержащийся во всех животных и растительных клетках, бактериях.

Глутатион участвует в ряде окислительно-восстановительных процессов. Он выполняет функцию антиоксиданта. Это обусловлено наличием в его составе цистеина и определяет возможность существования глутатиона в восстановленной и окисленной формах.

Карноз и н (от лат. carnosus ‒ мясной, caro ‒ мясо), C 9 H 14 O 3 N 4 , – дипептид (β-аланилгистидин), состоящий из аминокислот β-аланина и L-гистидина. Открыт в 1900 г. В. С. Гулевичем в мясном экстракте. Молекулярная масса 226, кристаллизуется в виде бесцветных игл, хорошо растворим в воде, нерастворим в спирте. Содержится в скелетной мускулатуре большинства позвоночных. Среди рыб встречаются виды, у которых карнозин и составляющие его аминокислоты отсутствуют (либо присутствует только L -гистидин или только β-аланин). В мышцах беспозвоночных карнозина нет. Содержание карнозина в мышцах позвоночных колеблется обычно от 200 до 400 мг % их сырой массы и зависит от их структуры и функции; у человека ‒ около 100-150 мг %.

Карнозин (β-аланил-L-гистидин) Ансерин (β-аланил-1-метил- L-гистидин)

Влияние карнозина на биохимические процессы, протекающие в скелетных мышцах, разнообразно, однако окончательно биологическая роль карнозина не установлена. Добавление карнозина к раствору, омывающему мышцу изолированного нервно-мышечного препарата, вызывает восстановление сокращений утомлённой мышцы.

Дипептид ансерин (N-метилкарнозин или β-аланил-1-метил- L-гистидин), сходный по строению с карнозином, в мышцах человека отсутствует, но имеется в скелетных мышцах тех видов, мышцы которых способны к быстрым сокращениям (мышцы конечностей кролика, грудная мышца птиц). Физиологические функции β-аланил-имидазольных дипептидов не вполне ясны. Возможно, они выполняют буферные функции и поддерживают рН в скелетной мышце, сокращающейся в анаэробных условиях. Однако ясно, что карнозин и ансерин стимулируют АТР-азную активность миозина in vitro, увеличивают амплитуду мышечного сокращения, предварительно сниженную утомлением. Академик С.Е. Северин показал, что имидазолсодержащие дипептиды не влияют непосредственно на сократительный аппарат, но увеличивают эффективность работы ионных насосов мышечной клетки. Оба дипептида образуют хелатные комплексы с медью и способствуют поглощению этого металла.

Антибиотик грамицидин S выделен из Bacillus brevis и представляющий собой циклический декапептид:

Грамицидин S

В структуре грамицидина S имеются 2 остатка орнитина, производные аминокислоты аргинина и 2 остатка D-изомеров фенилаланина.

Окситоц и н − гормон, вырабатываемый нейросекреторными клетками передних ядер гипоталамуса и затем переносимый по нервным волокнам в заднюю долю гипофиза, где он накопляется и откуда выделяется в кровь. Окситоцин вызывает сокращение гладких мышц матки и в меньшей степени − мышц мочевого пузыря и кишечника, стимулирует отделение молока молочными железами. По химической природе окситоцин − октапептид, в молекуле которого 4 остатка аминокислот связаны в кольцо цистином, соединённым также с трипептидом: Pro-Leu-Gly.

окситоцин

Рассмотрим нейропептиды (опиатные пептиды) . Первые два представителя нейропептидов, названные энкефалинами, были выделены из мозга животных:

Тир - Гли - Гли - Фен - Мет- Мет-энкефалин

Тир - Гли - Гли - Фен - Лей- Лей-энкефалин

Эти пептиды обладают обезболивающим действием и используются как лекарственные средства.

Анна Провизорова

телефон/viber: +79209794102

высшего образования

очно-заочного обучения

«Синтез пептида»

(должность) (Ф.И.О.)

Томск-201__

Уважаемые студенты!

Вы изучили раздел «Нуклеиновые кислоты. Матричные биосинтезы» дистанционного курса «Биологическая химия»

По теме «Синтез пептида»

Выберите пептид из списка,

при этом номер пептида должен соответствовать Вашему порядковому номеру в сквозном алфавитном списке студентов курса

ВАРИАНТЫ ПЕПТИДОВ

1. вал-глу- цис

2. вал-асп- цис

3. вал-ала- цис

4. вал-тир- цис

5. вал-фен- цис

6. гли-глу- три

7. гли- асп — три

8. гли- ала — три

9. гли- тир — три

10. гли- фен — три

11. ала-глу- глн

12. ала- асп — глн

13. ала- вал — глн

14. ала- тир — глн

15. ала- фен — глн

16. лей-глу-тир

17. лей- асп -тир

18. лей- ала -тир

19. лей- тир -цис

20. лей- фен -тир

21. илей-глу- асп

22. илей- асп — лиз

23. илей- ала — асп

24. илей- тир — асп

25. илей- фен- асп

26. сер-глу- мет

27. сер- асп — мет

28. сер- ала — мет

29. сер- тир — мет

30. сер- фен — мет

31. тре-глу- цис

32. тре- асп — цис

33. тре- ала — цис

34. тре- тир цис

35. тре- фен — цис

36. цис-глу- про

37. цис- асп — про

38. цис- ала — про

39. цис- тир — про

40. цис- фен — про

41. мет-глу- илей

42. мет- асп — илей

43. мет- ала — илей

44. мет- тир — илей

45. мет- фен- илей

46. фен-глу- лей

47. фен- асп — лей

48. фен- ала — лей

49. фен- тир — лей

50. фен- фен — лей

51. тир-глу- гис

52. тир- асп — гис

53. тир- ала — гис

54. тир- тир — гис

55. тир- фен — гис

56. три-глу- арг

57. три- асп — арг

58. три- ала — арг

59. три- тир — арг

60. три- фен — арг

61. асн-глу- лиз

62. ала- асп — лиз

63. ала- ала — лиз

64. ала- тир — лиз

65. ала- фен — лиз

66. про-глу- три

67. про- асп — три

68. про- ала — три

69. про- тир — три

70. про- фен — три

71. лиз-глу- тир

72. лиз- асп — тир

73. лиз- ала — тир

74. лиз- тир — сер

75. лиз- фен — тир

76. арг-глу- фен

77. арг- асп — фен

78. арг- ала — фен

79. арг- тир — фен

80. арг- фен — ала

81. гис-глу- тре

82. гис- асп — тре

83. гис- ала — тре

84. гис- тир — тре

85. гис- фен — тре

86. вал-глу- сер

87. вал- асп — сер

88. вал- ала — сер

89. вал- тир — сер

90. вал- фен — сер

91. ала-глу- цис

92. ала- асп — цис

93. ала- ала — цис

94. ала- тир — цис

95. ала- фен — цис

96. фен-асп- гли

97. фен- асп — гли

98. фен- ала — гли

99. фен- тир — гли

100. фен- фен- гли

101. вал-лиз- цис

102. вал-гис- цис

103. вал-арг- цис

104. вал-лей- цис

105. вал-про- цис

106. гли- лиз — три

107. гли- гис — три

108. гли- арг — три

109. гли- лей — три

110. гли- лиз — три

111. ала- лиз — глн

112. ала- гис — глн

113. ала- арг — глн

114. ала- лей — глн

115. ала- арг — глн

116. лей- лиз -тир

117. лей- гис -тир

118. лей- арг -тир

119. лей- лей -цис

120. лей- гис -тир

121. илей- лиз — асп

122. илей- гис — асп

123. илей- арг — асп

124. илей- лей — асп

125. илей- гли- асп

126. сер- лиз — мет

127. сер- гис — мет

128. сер- арг — мет

129. сер- лей — мет

130. сер- ала — мет

131. тре- лиз — цис

132. тре- гис — цис

133. тре- арг — цис

134. тре- лей цис

135. тре- вал — цис

136. цис- лиз — про

137. цис- гис — про

138. цис- арг — про

139. цис- лей — про

140. цис- лей — про

141. мет- лиз — илей

142. мет- гис — илей

143. мет- арг — илей

144. мет- лей — илей

145. мет-илей-про

146. фен- лиз — лей

147. фен- гис — лей

148. фен- арг — лей

149. фен- лей — лей

150. фен- сер — лей

151. тир- лиз — гис

152. тир- гис — ала

153. тир- арг — гис

154. тир- лей — гис

155. тир- тре — гис

156. три- лиз — арг

157. три- гис — арг

158. три- арг — арг

159. три- т лей — арг

160. три- цис — арг

161. асн- лиз — вал

162. ала- гис — лиз

163. ала- арг — лиз

164. ала- лей — лиз

165. ала- мет — лиз

166. про- лиз — три

167. про- гис — три

168. про- арг — три

169. про- лей — три

170. про- фен — три

171. лиз- лиз — тир

172. лиз- гис — тир

173. лиз- арг — тир

174. лиз- лей — сер

175. лиз- тир — тир

176. арг- лиз — фен

177. арг- гис — фен

178. арг- арг — фен

179. арг- лей — фен

180. арг- три — ала

181. гис- лиз — тре

182. гис- гис — тре

183. гис- арг — тре

184. гис- лей — тре

185. гис- асп — тре

186. вал- лиз — сер

187. вал- гис — сер

188. вал- арг — сер

189. вал- лей — сер

190. вал- глу- сер

191. ала- лиз — цис

192. ала- гис — цис

193. ала- арг — цис

194. ала- лей — цис

195. ала- асн — цис

196. фен- лиз — гли

197. фен- гис — гли

198. фен- арг — гли

199. фен- лей — гли

200. фен- глн- гли

1. Напишите нуклеотидный состав гена, кодирующего синтез пептида.

2. Напишите состав антикодоновой петли тРНК.

3. Напишите реакции активации аминокислот.

4. Распишите этапы синтеза пептида на рибосомах.

5. В структуре ДНК и РНК, требующихся для синтеза пептида, укажите количество пуриновых и пиримидиновых нуклеотидов.

6. Какие продукты образуются при распаде этих пуриновых и пиримидиновых. нуклеотидов, входящих в состав ДНК, кодирующей данный пептид.

Ответы:

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Сибирский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

(ФГБОУ ВО СибГМУ Минздрава России)

Индивидуальное задание

очно-заочного обучения

«Гормоны»

Выполнил: ________________ /_____________/

(должность) (Ф.И.О.)

Томск-201_

Уважаемые студенты!

Вы изучили раздел «Гормоны. Биохимия органов и тканей» дистанционного курса «Биологическая химия»

Гормоны »

Задание 1

Больной Н. для лечения инфекционного полиартрита в течение длительного времени получал преднизолон. Почувствовав улучшение, больной самовольно прекратил прием препарата. Вскоре состояние больного резко ухудшилось. При обследовании у него установили снижение концентрации глюкозы в крови, снижение артериального давления. В моче снизилось содержание 17-кетостероидов. Почему произошло ухудшение состояния больного. Для ответа:

1. Опишите механизм регуляции синтеза и секреции гормона, продукция которого была подавлена у больного в результате длительного приема преднизолона.

2. Назовите причины снижения концентрации глюкозы в крови и 17- кетостероидов, понижения артериального давления.

Ответы:

Задание 2

К врачу обратилась пациентка в возрасте 43 лет с жалобой на внезапно возникающие приступы, сопровождающиеся сильной слабостью, головной болью, чувством голода, нередко онемением в различных частях тела, скованностью в движениях и в то же время возбужденным состоянием. Приступы возникают натощак или через 2-3 часа после приема пищи, при выполнении физической нагрузки. После приема пищи приступ проходит. В крови увеличена концентрация С-пептида. Для какого заболевания характерны перечисленные симптомы? Для ответа:

1. Укажите, какие биохимические исследования, кроме определения концентрации С-пептида, необходимо провести, чтобы установить диагноз.

2. Предположите диагноз, который был поставлен врачом, и объясните молекулярные механизмы развития его симптомов.

Ответы:

Задание 3

Женщина 60 лет обратилась к врачу с жалобами на усталость, зябкость, сонливость, снижение памяти, увеличение массы тела. При обследовании выявлено умеренное ожирение, сухая, холодная кожа и одутловатое лицо. Щитовидная железа не пальпируется. Анализ крови показал: тироксин — 15 нмоль/л, ТТГ — 25 мЕ/л. Объясните причины изменения уровня этих гормонов в крови пациентки. Для ответа:

1. Опишите этапы синтеза йодтиронинов.

2. Как регулируется синтез и секреция йодтиронинов, укажите пути передачи гормонального сигнала в клетки-мишени.

3. Перечислите ткани-мишени, основные физиологические эффекты тироксина.

Ответы:

9//Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Сибирский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

(ФГБОУ ВО СибГМУ Минздрава России)

Индивидуальное задание

для студентов 3 курса фармацевтического факультета,

очно-заочного обучения

«Роль Р-гликопротеина в развитии лекарственной устойчивости»

Выполнил: ________________ /_____________/

(должность) (Ф.И.О.)

Томск-201_

Уважаемые студенты!

Вы изучили раздел «Фармацевтическая биохимия» дистанционного курса

«Биологическая химия»

Для закрепления теоретических знаний и овладения практическими навыками необходимо выполнить индивидуальное задание

по теме «Роль Р-гликопротеина в развитии лекарственной устойчивости »

Р-гликопротеин – является АТФ зависимым трансмембранным переносчиком и осуществляет транспорт различных цитотоксических веществ из клетки, т.е. их эффлюкс в просвет кишечника, снижая их всасывание. Большинство лекарственных средств (глюкокортикоиды, противоопухолевые препараты, макролиды, статины) являются субстратами Р-гликопротеина. Степень эффективности этих веществ зависит от полноценности функционирования Р-гликопротеина. Поиск селективных ингибиторов Р-гликопротеина являются основой индивидуализированной фармакотерапии.

Выполните индивидуальное задание по следующему плану:

1. Строение Р-гликопротеина.

2. Локализация в клетках.

3. Полиморфизм гена.

4. Субстраты, ингибиторы и индукторы Р-гликопротеина.

5. Роль Р-гликопротеина в первичной и вторичной множественной лекарственной устойчивости.

6. Приведите список используемой литературы.

Ответы:

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Сибирский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

(ФГБОУ ВО СибГМУ Минздрава России)

Индивидуальное задание для студентов

3 курса фармацевтического факультета,

очно-заочного обучения

«Катаболизм белка»

Выполнил: ________________ /_____________/

(должность) (Ф.И.О.)

Томск-201__

Уважаемые студенты!

Вы изучили раздел «Обмен белков» дистанционного курса «Биологическая химия»

Для закрепления теоретических знаний и овладения практическими навыками необходимо выполнить индивидуальное задание по теме «Катаболизм белка»

Выберите тему из списка,

1. Катаболизм белка куриного яйца

2. Катаболизм белка мяса

3. Катаболизм белка молока

4. Катаболизм соевого белка

5. Катаболизм белка фасоли

6. Катаболизм белков осетровой икры

7. Катаболизм белков красной рыбы

8. Катаболизм белков морепродуктов (креветок)

9. Катаболизм белков мяса кролика

10. Катаболизм белков сыра

Ответ составьте по следующему плану:

1. Дайте характеристику аминокислот, входящих в состав белка, по биологическим функциям.

2. Какова ИЭТ данного белка и что это означает.

3. Предложите метод, с помощью которого можно определить концентрацию белка. Укажите принцип метода.

4. Перечислите и охарактеризуйте специфичность ферментов желудочно-кишечного тракта, способных гидролизовать данный белок. Укажите продукты гидролиза.

5. Опишите механизм всасывания и пути метаболизма аминокислот, полученных при гидролизе белка.

6. Перечислите пути использования этих аминокислот в организме.

7. Напишите реакцию дезаминирования одной из аминокислот, входящих в состав белка. Какие требуются ферменты и витамины для этих процессов?

8. Напишите реакцию декарбоксилирования одной из аминокислот, входящих в состав белка, в результате которых образуются биогенные амины. Какие требуются ферменты и витамины для этих процессов?

9. Какие токсические продукты могут образовываться при избытке данного белка?

10. Напишите две реакции обезвреживания аммиака.

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Сибирский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

(ФГБОУ ВО СибГМУ Минздрава России)

Индивидуальное задание

для студентов 3 курса фармацевтического факультета,

очно-заочного обучения

«Энергетический эффект окисления углеводов»

Выполнил: ________________ /_____________/

(должность) (Ф.И.О.)

Томск-201__

Уважаемые студенты!

Для закрепления теоретических знаний и овладения практическими навыками необходимо выполнить индивидуальное задание

по теме «Энергетический эффект окисления углеводов »

Выберите тему из списка,

при этом номер темы должен соответствовать последней цифре номера зачетной книжки

1. Энергетический эффект анаэробного окисления глюкозы

2. Энергетический эффект полного окисления глюкозы-1-фосфата

3. Энергетический эффект окисления фруктозы

4. Энергетический эффект окисления глицероальдегидфосфата

5. Энергетический эффект окисления диоксиацетонфосфата

6. Энергетический эффект окисления фруктозы-1,6-дифосфата

7. Энергетический эффект окисления галактозы

8. Энергетический эффект окисления мальтозы

9. Энергетический эффект окисления сахарозы

10. Энергетический эффект окисления лактозы

Ответ составьте по следующему плану:

1. Источник и этапы образования данного вещества из углеводов, поступающих с пищей, с указанием ферментов желудочно-кишечного тракта.

2. Пути использования этого вещества в организме.

3. Расписать этапы метаболизма, связанные с образованием НАДН, ФАДН2, АТФ, ГТФ, АТФ.

4. В случае если НАДН образуется в цитоплазме — то указать механизм транспорта в митохондрии на дыхательную цепь, где будет синтезироваться АТФ.

5. Указать способ синтеза АТФ (фосфорилирования): субстратный или окислительный.

6. Полученный энергетический выход сравнить с количеством АТФ, образующимся при полном окислении глюкозы.

Ответы:

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Сибирский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

(ФГБОУ ВО СибГМУ Минздрава России)

Индивидуальное задание

для студентов 3 курса фармацевтического факультета,

очно-заочного обучения

«Обмен жирных кислот»

Выполнил: ________________ /_____________/

(должность) (Ф.И.О.)

Томск-201_

Уважаемые студенты!

Вы изучили раздел «Углеводы» дистанционного курса «Биологическая химия»

Для закрепления теоретических знаний и овладения практическими навыками необходимо выполнить индивидуальное задание

по теме «Обмен жирных кислот »

Выберите тему из списка, при этом номер темы должен соответствовать последней цифре номера зачетной книжки

1. Распад и синтез миристиновой кислоты

2. Распад и синтез пальмитиновой кислоты

3. Распад и синтез стеариновой кислоты

4. Распад и синтез арахиновой кислоты

5. Распад и синтез лигноцериновой кислоты

6. Распад и синтез олеиновой кислоты

7. Распад и синтез нервоновой кислоты

8. Распад и синтез ленолевой кислоты

9. Обмен линоленовой кислоты

10. Обмен арахидоновой кислоты

Ответ составьте по следующему плану:

1. Укажите продукты, в которых содержится эта кислота.

2. Напишите этапы переваривания жиров в желудочно-кишечном тракте, указав роль желчных кислот, ферментов и механизм всасывания.

3. Перечислите катаболические и анаболические пути использования жирной кислоты.

4. Рассчитайте количество молекул АТФ, которое образуется при b- окислении жирной кислоты.

5. Укажите пути использования ацетил-КоА, образующегося в процессе распада жирной кислоты.

6. Напишите этапы синтеза данной жирной кислоты в организме.

7. Составьте схему синтеза данной кислоты из продуктов метаболизма глюкозы.

Ответы:

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Сибирский государственный медицинский университет»

Вы изучили раздел «Биологическое окисление. Дыхательная цепь» дистанционного курса «Биологическая химия»

Для закрепления теоретических знаний и овладения практическими навыками необходимо выполнить индивидуальное задание по теме «Дыхательная цепь »

Выберите субстрат из списка, при этом номер темы должен соответствовать последней цифре номера зачетной книжки

1. a-Кетоглутарат (последняя цифра 1,6)

2. Изоцитрат (последняя цифра 2,7)

3. Пируват (последняя цифра 3, 8)

4. Малат (последняя цифра 4,9)

5. Сукцинат (последняя цифра 5,10)

Ответ составьте по следующему плану:

1. Назовите фермент, катализирующий окисление субстрата.

2. Назовите кофермент (восстановленный эквивалент).

3. На какой участок дыхательной цепи передаст восстановленный эквивалент электроны и протоны.

Анна Провизор / taurusann

Уважаемые коллеги! Так как учеба становится с каждым годом все труднее, предлагаю свои услуги по решению различных фармацевтических дисциплин. Иногда даже при хорошей учебе всего не успеть, поэтому своевременное обращение ко мне поможет предупредить и решить Вам много проблем.

Данные о механизме действия АКТГ на синтез стероидных гормоновсвидетельствуют о существенной роли аденилатциклазной системы. Предполагают, что АКТГ вступает во взаимодействие со специфическимирецепторами на внешней поверхности клеточной мембраны (рецепторыпредставлены белками в комплексе с другими молекулами, в частностис сиаловой кислотой). Сигнал затем передается на фермент аденилатциклазу, расположенную на внутренней поверхности клеточной мембраны, которая катализирует распад АТФ и образование цАМФ. Последний активируетпротеинкиназу, которая в свою очередь с участием АТФ осуществляетфосфорилирование холинэстеразы, превращающей эфиры холестерина всвободный холестерин, который поступает в митохондрии надпочечников,где содержатся все ферменты, катализирующие превращение холестеринав кортикостероиды.Соматотропный гормон (СТГ, гормон роста,соматотропин)синтезируется в ацидофильных клетках передней доли гипофиза;концентрация его в гипофизе составляет 5–15 мг на 1 г ткани. СТГ человека состоит из 191 аминокислотыи содержит две дисульфидные связи; N- и С-концевые аминокислотыпредставлены фенилаланином.СТГ обладает широким спектром биологического действия. Он влияетна все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК,РНК и гликогена и в то же время способствует мобилизации жиров из депои распаду высших жирных кислот и глюкозы в тканях. Помимо активациипроцессов ассимиляции, сопровождающихся увеличением размеров тела,ростом скелета, СТГ координирует и регулирует скорость протеканияобменных процессов. Многие биологические эффекты этого гормона осуществляются черезособый белковый фактор, образующийся в печени под влиянием гормона – соматомедин. По своей природе он оказалсяпептидом с мол. массой 8000. Тиреотропный гормон (ТТГ, тиротропин) является сложным гликопротеином и содержит, кроме того, по две α- и β-субъединицы,которые в отдельности биологической активностью не обладают: мол. масса его около 30000.Тиротропин контролирует развитие и функцию щитовидной железыи регулирует биосинтез и секрецию в кровь тиреоидных гормонов. Полностью расшифрована первичная структура α- и β-субъединиц тиротропина: α-субъединица, содержащая 96 аминокислотныхостатков; β-субъединица тиротропина человека, содержащая 112 аминокислотных остатков,К гонадотропным гормонам(гонадотропины) относятся фолликулостимулирующий гормон (ФСГ,фоллитропин) и лютеинизирующий гормон (ЛГ, лютропин). Оба гормона синтезируютсяв передней доле гипофиза и являются сложнымибелками – гликопротеинами с мол. массой 25000. Они регулируют стероидо- и гаметогенез в половых железах. Фоллитропин вызывает созревание фолликулов в яичниках у самок и сперматогенез – у самцов. Лютропину самок стимулирует секрецию эстрогенов и прогестерона, как и разрывфолликулов с образованием желтого тела, а у самцов – секрецию тестостерона и развитие интерстициальной ткани. Биосинтез гонадотропинов,как было отмечено, регулируется гипоталамическим гормоном гонадолиберином.Лютропин состоит из двух α- и β-субъединиц: α-субъединица гормона содержит из 89 аминокислотных остатков с N-конца и отличается природой 22 аминокислот.

29. Гормоны задней доли гипофиза: вазопрессин, окситоцин. Химическая природа. Механизм их действия, биологический эффект. Нарушения функций организма, связанные с недостатком выработки этих гормонов.

Гормоны вазопрессин и окситоцин синтезируются рибосомальным путем. Оба гормонапредставляют собой нонапептиды следующего строения: Вазопрессин отличается от окситоцина двумя аминокислотами: он содержит в положении 3 от N-конца фенилаланин вместо изолейцинаи в положении 8 – аргинин вместо лейцина. Основной биологический эффект окситоцина у млекопитающих связан со стимуляцией сокращения гладких мышц матки при родах и мышечных волокон вокруг альвеол молочных желез, что вызывает секрецию молока. Вазопрессин стимулирует сокращение гладких мышечных волокон сосудов, оказывая сильное вазопрессорное действие, однако основная роль его в организме сводится к регуляции водного обмена, откуда его второе название антидиуретического гормона. В небольших концентрациях (0,2 нг на 1 кг массы тела) вазопрессин оказывает мощное антидиуретическое действие – стимулирует обратный ток воды через мембраны почечных канальцев. В норме он контролирует осмотическое давление плазмы крови и водный баланс организма человека. При патологии, в частности атрофии задней доли гипофиза, развивается несахарный диабет – заболевание, характеризующееся выделением чрезвычайно больших количеств жидкости с мочой. При этом нарушен обратный процесс всасывания воды в канальцах почек.

Окситоцин

Вазопрессин

30. Гормоны щитовидной железы: трийодтиронин и тироксин. Химическая природа, биосинтез. Механизм действия гормонов на молекулярном уровне, биологический эффект. Изменение обмена вещества при гипертиреозе. Механизм возникновения эндемического зоба и его предупреждение.

Тироксин и трийодтиронин – основные гормоны фолликулярной части щитовидной железы. Помимо этих гормонов (биосинтез и функции которых будут рассмотрены ниже), в особых клетках – так называемых парафолликулярных клетках, или С-клетках щитовидной железы, синтезируется гормон пептидной природы, обеспечивающий постоянную концентрацию кальция в крови. Он получил название ≪кальцитонин ≫. Биологическое действие кальцитонина прямо противоположно эффекту паратгормона: он вызывает подавление в костной ткани резорбтивных процессов и соответственно гипокальциемию и гипофосфатемию. Из L-тиронина легко синтезируется гормон щитовидной железы тироксин, содержащий в 4 положениях кольцевой структуры йод Биологическое действие гормонов щитовидной железы распространяется на множество физиологических функций организма. В частности, гормоны регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечнососудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др. Гипофункция щитовидной железы в раннем детском возрасте приводит к развитию болезни, известной в литературе как кретинизм . Помимо остановки роста, специфических изменений кожи, волос, мышц, резкогоснижения скорости процессов обмена, при кретинизме отмечаются глубокие нарушения психики; специфическое гормональное лечение в этом случае не дает положительных результатов. Повышенная функция щитовидной железы (гиперфункция) вызывает развитие гипертиреоза

L-тироксин L-3,5,3"-трийодтиронин

31. Гормоны коры надпочечников: глюкокортикоиды, минералокортикоиды. Химическая природа. Механизм действия на молекулярном уровне. Их роль в регуляции углеводного, минерального, липидного и белкового обмена.

В зависимости от характера биологического эффекта гормоны коркового вещества надпочечников условно делят на глюкокортикоиды (кортикостероиды, оказывающие влияние на обмен углеводов, белков, жиров и нуклеиновых кислот) и минералокортикоиды (кортикостероиды,оказывающие преимущественное влияние на обмен солей и воды). К первым относятся кортикостерон, кортизон, гидрокортизон (кортизол), 11-дезоксикортизол и 11-дегидрокортикостерон, ко вторым – дезоксикортикостерон и альдостерон. В основе их структуры, так же как и в основе строения холестерина, эргостерина, желчных кислот, витаминов группы D, половых гормонов и ряда других веществ, лежит конденсированная кольцевая система циклопентанпергидрофенантрена. Глюкокортикоиды оказывают разностороннее влияние на обмен веществ в разных тканях. В мышечной, лимфатической, соединительной и жировойтканях глюкокортикоиды, проявляя катаболическое действие, вызывают снижение проницаемости клеточных мембран и соответственно торможение поглощения глюкозы и аминокислот; в то же время в печени они оказывают противоположное действие. Конечным итогом воздействия глюкокортикоидов является развитие гипергликемии, обусловленной главным образом глюконеогенезом. Минералокортикоиды (дезоксикортикостерон и альдостерон) регулируют главным образом обмен натрия, калия, хлора и воды; они способствуют удержанию ионов натрия и хлора в организме и выведению с мочой ионов калия. По-видимому, происходит обратное всасывание ионов натрия и хлора в канальцах почек в обмен на выведение других продуктов обмена,

кортизол

32. Паратгормон и кальцитонин. Химическая природа. Механизм действия на молекулярном уровне. Влияние на обмен кальция, гиперкальциемия и гипокальциемия.

К гормонам белковой природы относится также паратиреоидный гормон (паратгормон). Они синтезируются паращитовидными железами. Молекула паратгормона быка содержит 84аминокислотных остатка и состоит из одной полипептидной цепи. Выяснено, что паратгормон участвует в регуляции концентрации катионов кальция и связанных с ними анионов фосфорной кислоты в крови. Биологически активной формой считается ионизированный кальций, концентрация его колеблется в пределах 1,1–1,3 ммоль/л. Ионы кальция оказались эссенциальными факторами, не заменимыми другими катионами для ряда жизненно важных физиологических процессов: мышечное сокращение, нервно-мышечное возбуждение, свертывание крови, проницаемость клеточных мембран, активность ряда ферментов и т.д. Поэтому любые изменения этих процессов, обусловленные длительным недостатком кальция в пище или нарушением его всасывания в кишечнике, приводят к усилению синтеза паратгормона, который способствует вымыванию солей кальция (в виде цитратов и фосфатов) из костной ткани и соответственно к деструкции минеральных и органических компонентов костей. Другой орган-мишень паратгормона – это почка. Паратгормон уменьшает реабсорбцию фосфата в дистальных канальцах почки и повышает канальцевую реабсорбцию кальция.В особых клетках – так называемых парафолликулярных клетках, или С-клетках щитовидной железы, синтезируется гормон пептидной природы, обеспечивающий постоянную концентрацию кальция в крови - кальцитонин. Формула:

Кальцитонин содержит дисульфидный мостик (между 1-м и 7-маминокислотными остатками) и характеризуется N-концевым цистеиноми С-концевым пролинамидом. Биологическоедействие кальцитонина прямо противоположно эффекту паратгормона: онвызывает подавление в костной ткани резорбтивных процессов и соответственно гипокальциемию и гипофосфатемию. Таким образом, постоянствоуровня кальция в крови человека и животных обеспечивается главнымобразом паратгормоном, кальцитриолом и кальцитонином, т.е. гормонамикак щитовидной и паращитовидных желез, так и гормоном – производнымвитамина D3. Это следует учитывать при хирургических лечебных манипуляциях на данных железах.

33. Гормоны мозгового слоя надпочечников – катехоламины: адреналин и норадреналин. Химическая природа и биосинтез. Механизм действия гормонов на молекулярном уровне, их роль в регуляции обмена углеводов, жиров и аминокислот. Нарушения обмена при заболеваниях надпочечников.

Эти гормоны по строению напоминают аминокислоту тирозин, от которого они отличаются наличием дополнительных ОН-групп в кольце и у β-углеродного атома боковой цепи и отсутствием карбоксильной группы.

Адреналин Норадреналин Изопропиладреналин

В мозговом веществе надпочечников человека массой 10 г содержится около 5 мг адреналина и 0,5 мг норадреналина. Содержание их в крови составляет соответственно 1,9 и 5,2 нмоль/л. В плазме крови оба гормона присутствуют как в свободном, так и в связанном, в частности, с альбуминами состоянии. Небольшие количества обоих гормонов откладываются в виде соли с АТФ в нервных окончаниях, освобождаясь в ответ на ихраздражение. Кроме того, все они оказывают мощное сосудосуживающее действие, вызывая повышение артериальногодавления, и в этом отношении действие их сходно с действием симпатической нервной системы. Известно мощное регулирующее влияние этихгормонов на обмен углеводов в организме. Так, в частности, адреналинвызывает резкое повышение уровня глюкозы в крови, что обусловленоускорением распада гликогена в печени под действием фермента фосфорилазы. Гипергликемическйй эффект норадреналина значительно ниже – примерно 5% от действия адреналина. Параллельно отмечаются накопление гексозофосфатов в тканях, в частности в мышцах, уменьшение концентрации неорганического фосфата и повышение уровня ненасыщенных жирных кислот в плазме крови. Имеются данные о торможении окисления глюкозы в тканях под влиянием адреналина. Это действие некоторые авторы связывают с уменьшением скорости проникновения (транспорта) глюкозы внутрь клетки. Известно, что и адреналин, и норадреналин быстро разрушаются в организме; с мочой выделяются неактивные продукты их обмена, главным образом в виде 3-метокси-4-оксиминдальной кислоты, оксоадренохрома, метоксинорадреналина и метоксиадреналина. Эти метаболиты содержатся в моче преимущественно в связанной с глюкуроновой кислотой форме. Ферменты, катализирующие указанные превращения катехоламинов, выделены из многих тканей и достаточно хорошо изучены, в частности моноаминоксидаза (МАО), определяющая скорость биосинтеза и распада катехоламинов, и катехолметилтрансфераза, катализирующая главный путь превращения адреналина, т.е. о- метилирование за счет S-аденозилметионина. Приводим структуру двух конечных продуктов распада

34. Глюкагон и инсулин. Химическая природа, биосинтез инсулина. Механизм действия этих гормонов на молекулярном уровне. Их роль в регуляции обмена углеводов, жиров, аминокислот. Биохимические нарушения при сахарном диабете.

Инсулин, получивший свое название от наименования панкреатических островков. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Так, повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот,– замедление секреции инсулина. Этот феномен контроля по типу обратной связи рассматривается как один из важнейших механизмов регуляции содержания глюкозы в крови. При недостаточной секреции инсулина развивается специфическое заболевание – сахарный диабет. Физиологические эффекты инсулина:Инсулин - единственный гормон, снижающий содержание глюкозы в крови, это реализуется через:

§ усиление поглощения клетками глюкозы и других веществ;

§ активацию ключевых ферментов гликолиза;

§ увеличение интенсивности синтеза гликогена - инсулин форсирует запасание глюкозы клетками печени и мышц путём полимеризации её в гликоген;

§ уменьшение интенсивности глюконеогенеза - снижается образование в печени глюкозы из различных веществ

Анаболические эффекты

§ усиливает поглощение клетками аминокислот (особенно лейцина и валина);

§ усиливает транспорт в клетку ионов калия, а также магния и фосфата;

§ усиливает репликацию ДНК и биосинтез белка;

§ усиливает синтез жирных кислот и последующую их этерификацию - в жировой ткани и в печени инсулин способствует превращению глюкозы в триглицериды; при недостатке инсулина происходит обратное - мобилизация жиров.

Антикатаболические эффекты

§ подавляет гидролиз белков - уменьшает деградацию белков;

§ уменьшает липолиз - снижает поступление жирных кислот в кровь.

Глюкагон - гормон альфа-клеток островков Лангерганса поджелудочной железы. По химическому строению глюкагон является пептидным гормоном. Молекула глюкагона состоит из 29 аминокислот и имеет молекулярный вес 3485. Первичная структура молекулы глюкагона следующая.