Электричество | Заметки электрика. Совет специалиста

Схемы генераторов импульсов. Импульсный генератор тока Использование генератора прямоугольных импульсов

Назначение этих устройств понятно из названия. С их помощью создают импульсы, которые обладают определёнными параметрами. При необходимости можно приобрести аппарат, изготовленный с применением фабричных технологий. Но в данной статье будут рассмотрены принципиальные схемы и технологии сборки своими руками. Эти знания пригодятся для решения разных практических задач.

Как выглядит генератор импульсов Г5-54

Необходимость

При нажатии клавиши электромузыкального инструмента, электромагнитные колебания усиливаются и поступают на громкоговоритель. Слышен звук определённого тона. В этом случае используется генератор синусоидального сигнала.

Для слаженной работы памяти, процессоров, других составных частей компьютера необходима точная синхронизация. Образцовый сигнал с неизменной частотой создаётся тактовым генератором.

Чтобы проверить работу счётчиков, других электронных устройств, выявить неисправности, применяют единичные импульсы с необходимыми параметрами. Такие задачи решают с помощью специальных генераторов. Обычный ручной переключатель не подойдёт, так как с его содействием не получится обеспечить определённую форму сигнала.

Параметры выходных сигналов

Перед выбором той или иной схемы, необходимо точно сформулировать цель проекта. На следующем рисунке приведён в увеличенном виде типичный прямоугольный сигнал.

Схема прямоугольного импульса

Его форма не является идеальной:

  • Напряжение возрастает постепенно. Учитывают длительность фронта. Этот параметр определяется временем, за которое импульс вырастает от 10 до 90% амплитудной величины.
  • После максимального выброса и возврата к исходному значению возникают колебания.
  • Вершина – неплоская. Поэтому длительность импульсного сигнала замеряется на условной линии, которая проведена на 10% ниже максимального значения.

Также для определения параметров будущей схемы используют понятие скважности. Этот параметр вычисляется по следующей формуле:

  • S – это скважность;
  • T – период повторения импульса;
  • t – длительность импульса.

При невысокой скважности кратковременный сигнал сложно фиксировать. Это провоцирует сбои в системах передачи информации. Если временное распределение максимумов и минимумов одинаковое, параметр будет равен двум. Такой сигнал называют меандром.

Меандр и основные параметры импульса

Для упрощения в дальнейшем будут рассмотрены только генераторы прямоугольных импульсов.

Принципиальные схемы

На следующих примерах можно понять принципы работы самых несложных устройств этого класса.

Схемы генераторов прямоугольных импульсов

Первая схема предназначена для формирования единичных прямоугольных импульсов. Она создана на двух логических элементах, которые соединены для выполнения функций триггера типа RS. Если кнопка находится в указанном положении, на третьей ножке микросхемы будет высокое напряжения, а на шестой – низкое. При нажатии уровни поменяются, но не возникнет дребезг контактов и соответствующие искажения выходного сигнала. Так как для работы требуется внешнее воздействие (в этом случае – ручное управление), это устройство не относится к группе автогенераторов.

Простой генератор, но выполняющий свои функции самостоятельно, изображён на второй половине рисунка. При подаче питания через резистор заряжается конденсатор. Реле срабатывает не сразу, так как после разрыва контакта, некоторое время течение тока через обмотку, обеспечивается зарядом конденсатора. После замыкания цепи этот процесс повторяется неоднократно, пока не будет отключено питание.

Изменяя номиналы сопротивления и конденсатора, можно наблюдать на осциллографе за соответствующими трансформациями частоты и других параметров сигнала. Такой генератор прямоугольных сигналов создать будет нетрудно своими руками.

Для того чтобы расширить диапазон частоты, пригодится следующая схема:

Генератор с изменяемыми параметрами импульсов

Чтобы реализовать план, двух логических элементов недостаточно. Но подобрать одну подходящую микросхему нетрудно (например, в серии К564).

Параметры сигнала, которые можно изменить регулировкой своими руками, другие важные параметры

Элемент принципиальной схемы Предназначение и особенности
VT1 Этот полевой транзистор использован для того, чтобы в цепи обратной связи можно было применить резисторы с высоким сопротивлением.
C1 Допустимая ёмкость конденсатора – от 1 до 2 мкФ.
R2 Величина сопротивления определяет длительность верхних частей импульсов.
R3 Этот резистор – устанавливает длительность нижних частей.

Чтобы обеспечить стабильность частоты прямоугольных сигналов, используют схемы на кварцевых элементах:

Видео. Высоковольтный генератор импульсов своими руками

Чтобы своими руками было проще собрать генератор импульсов определённой частоты, лучше использовать универсальную монтажную плату. Она пригодится для экспериментов с разными принципиальными электрическими схемами. После приобретения навыков и соответствующих знаний, будет нетрудно создать идеальное устройство для успешного решения конкретной задачи.

И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

Генератор импульсов тока (ГИТ) предназначен для формиро­вания многократно повторяющихся импульсов тока, воспроизво­дящих электрогидравлический эффект. Принципиальные схемы ГИТ были предложены еще в 1950-х годах и за истекшие годы не претерпели существенных изменений, однако значитель­но усовершенствовались их комплектующее оборудование и уро­вень автоматизации. Современные ГИТ предназначены для работы в широком диапазоне напряжения (5-100 кВ), емкости конден­сатора (0,1 -10000 мкФ), запасенной энергии накопителя (10-106 Дж), частоты следования импульсов (0,1 -100 Гц).

Приведенные параметры охватывают большую часть режимов, в которых работают электрогидравлические установки различного назначения.

Выбор схемы ГИТ определяется в соответствии с назначением конкретных электрогидравлических устройств. Каждая схема ге­нератора включает в себя следующие основные блоки: блок питания - трансформатор с выпрямителем; накопитель энер­гии - конденсатор; коммутирующее устройство - формирующий (воздушный) промежуток; нагрузка - рабочий искровой про­межуток. Кроме того, схемы ГИТ включают в себя токоограни­чивающий элемент (это может быть сопротивление, емкость, индуктивность или их комбинированные сочетания). В схемах ГИТ может быть несколько формирующих и рабочих искровых про­межутков и накопителей энергии. Питание ГИТ осуществляется, как правило, от сети переменного тока промышленной частоты и напряжения.

ГИТ работает следующим образом. Электрическая энергия через токоограничивающий элемент и блок питания поступает в накопитель энергии - конденсатор. Запасенная в конденсаторе энергия с помощью коммутирующего устройства - воздушного формирующего промежутка - импульсно передается на рабочий промежуток в жидкости (или другой среде), на котором происхо­дит выделение электрической энергии накопителя, в результате чего возникает электрогидравлический удар. При этом форма и длительность импульса тока, проходящего по разрядной цепи ГИТ, зависят как от параметров зарядного контура, так и от па­раметров разрядного контура, включая и рабочий искровой про­межуток. Если для одиночных импульсов специальных ГИТ пара­метры цепи зарядного контура (блока питания) не оказывают существенного влияния на общие энергет-ические показатели электрогидравлических установок различного назначения, то в промышленных ГИТ КПД зарядного контура существенно влияет на КПД электрогидравлической установки.

Использование в схемах ГИТ реактивных токоограничивающих элементов обусловлено их свойством накапливать и затем отдавать энергию в электрическую цепь, что в конечном счете повы­шает КПД.

Электрический КПД зарядного контура простой и надежной в эксплуатации схе{ды ГИТ с ограничивающим активным зарядным сопротивлением (рис. 3.1, а) весьма низок (30-35 %), так как заряд конденсаторов осуществляется в ней пульсирующими напря­жением и током. Введением в схему специальных регуляторов напряжения (магнитного усилителя, дросселя насыщения) можно добиться линейного изменения вольт-амперной характеристики заряда емкостного накопителя и тем самым создать условия, при которых потери энергии в зарядной цепи будут минимальны, а общий КПД ГИТ может быть доведен до 90 % .

Для увеличения общей мощности при использовании простей­шей схемы ГИТ кроме возможного применения более мощного трансформатора целесообразно иногда использовать ГИТ, имеющий три однофазных трансформатора, первичные цепи ко­торых соединены «звездой» или «треугольником» и питаются от трехфазной сети. Напряжение с их вторичных обмоток подается на отдельные конденсаторы, которые работают через вращающий­ся формирующий -промежуток на один общий рабочий искровой промежуток в жидкости (рис. 3.1, б) [-|] . .4

При проектировании и разработке ГИТ электрогидравлических установок значительный интерес представляет использование резонансного режима заряда емкостного накопителя от источника переменного тока без выпрямителя. ОбгЦий электрический КПД резонансных схем очень высок (до 95 %), а при их использова­нии происходит автоматическое значительное повышение рабо­чего напряжения. Резонансные схемы целесообразно использо­вать при работе на больших частотах (до 100 Гц), но для этого требуются специальные конденсаторы, предназначенные для работы на переменном токе. При использовании этих схем необходимо соблюдать известное условие резонанса

Ш = 1 /л[ГС,

Где со-частота вынуждающей ЭДС; Ь-индуктивность контура; С- емкость контура.

Однофазный резонансный ГИТ (рис. 3.1, в) может иметь общий электрический КПД, превышающий 90%. ГИТ позволяет получать стабильную частоту чередования разрядов, оптимально равную либо однократной, либо двукратной частоте питающего тока (т. е. 50 и 100 Гц соответственно) при питании током про­мышленной частоты. Применение схемы наиболее рационально (. при мощности питающего трансформатора 15-30 кВт. В разряд­ный контур схемы вводится синхронизатор - воздушный форми­рующий промежуток, между шарами которого расположен вра-

Щающийся диск с контактом, вызывающим срабатывание форми­рующего промежутка при проходе контакта между шарами. При этом вращение диска синхронизируется с моментами пиков напряжения .

Схема трехфазного резонансного ГИТ (рис. 3.1,г) включает" в себя трехфазный повышающий трансформатор, каждая обмотка на высокой стороне которого работает как однофазная резонан­сная схема н^ один общий для всех или на три самостоятель­ных рабочих искровых промежутка при общем синхронизаторе на три формирующих промежутка. Эта схема позволяет получать частоту чередования разрядов, равную трехкратной или шести­кратной частоте питающего тока (т. е. 150 или 300 Гц соответ­ственно) при работе на промышленной частоте. Схема рекомен­дуется для работы на мощностях ГИТ 50 кВт и более. Трехфазная схема ГИТ экономичнее, так как время зарядки емкостного на­копителя (той же мощности) меньше, чем при использовании одно­фазной схемы ГИТ. Однако дальнейшее увеличение мощности выпрямителя будет целесообразно" только до определенного предела .

Повысить экономичность процесса заряда емкостного накопи­теля ГИТ можно путем использования различных схем с фильтро­вой емкостью. Схема ГИТ с фильтровой емкостью и индуктив­ной зарядной цепью рабочей емкости (рис. 3.1, (3) позволяет по­лучать, практически любую частоту чередования импульсов при работе на небольших (до 0,1 ^мкФ) емкостях и имеет общий электрический КПД - около 85 %. Это достигается тем, что филь­тровая емкость работает в режиме неполной разрядки (до 20 %), а рабочая емкость заряжается через индуктивную цепь - дрос­сель с малым активным сопротивлением - в течение одного полу- периода в колебательном режиме, задаваемым вращением диска на первом формирующем. промежутке. При этом фильтровая емкость превышает рабочую в 15-20 раз .

Вращающиеся диски формирующих искровых промежутков сидят на одном валу и поэтому частоту чередования разрядов можно варьировать в очень широких пределах, максимально огра­ниченных лишь мощностью питающего трансформатора. В этой схеме могут быть использованы трансформаторы на 35-50 кВ, так как она удваивает напряжение. Схема может подсоединяться и непосредственно к высоковольтной сети.

В схеме ГИТ с фильтровой емкостью (рис. 3.1, е) поочередное подсоединение рабочей и фильтровой емкостей к рабочему искро­вому промежутку в жидкости осуществляется при помощи одного вращающегося разрядника - формирующего промежутка . Однако при работе такого ГИТ срабатывание вращающегося разрядника начинается при меньшем напряжении (при сближении шаров) и заканчивается при большем (при удалении. шаров), чем это задано минимальным расстоянием между шарами раз­рядников. Это приводит к нестабильности основного параметра

Разрядов-.напряжения, а следовательно, к снижению надеж­ности работы генератора.

Для повышения надежности работы ГИТ путем обеспечения заданной стабильности параметров разрядов в схему ГИТ с фильт­ровой емкостью включают вращающееся коммутирующее устрой­ство - диск со скользящими контактами для поочередного пред­варительного бестокового включения и выключения зарядного и разрядного контуров.

При подаче напряжения на з"арядный контур генератора пер­воначально заряжается фильтровая емкость. Затем вращающимся контактом без тока (а значит, и без искрения) замыкается цепь, на шарах формирующего разрядника возникает разность потен­циалов, происходит пробой и рабочий конденсатор заряжается до напряжения фильтровой емкости. После этого ток в цепи ис­чезает и контакты вращением диска размыкаются вновь без искрения. Далее вращающимся диском (также без тока и искре­ния) замыкаются контакты разрядного контура и напряжение рабочего конденсатора подается на формирующий разряднйк, происходит его пробой, а также пробой рабочего искрового про­межутка в жидкости. При этом рабочий конденсатор разряжается, ток в разрядном контуре прекращается и, следовательно, контак­ты вращением диска могут быть разомкнуты вновь без разрушаю­щего их искрения. Далее цикл повторяется с частотой следования разрядов, задаваемой частотой вращения диска коммутирующего устройства.

Использование ГИТ этого типа позволяет получать стабильные параметры неподвижных шаровых разрядников и осуществлять замыкание и размыкание цепей зарядного и разрядного контуров в бестоковом режиме, тем самым улучшая все показатели и надеж­ность работы генератора силовой установки.

Была разработана также схема питания электрогидравли - ческих установок, позволяющая наиболее рационально исполь­зовать электрическую энергию (с минимумом возможных потерь). В известных электрогидравлических устройствах рабочая камера заземлена и поэтому часть энергии после пробоя рабочего искрового промежутка в жидкости практически теряется, рас­сеиваясь на заземлении. Кроме того, при каждом разряде рабочего конденсатора на его обкладках сохраняется небольшой (до 10 % от первоначального) заряд.

Опыт показал, что любое электрогидравлическое устройство может эффективно работать по схеме, в которой энергия, запасен­ная на одном конденсаторе С1, пройдя через формирующий про­межуток ФП, поступает на рабочий искровой промежуток РП, где в большей своей части расходуется на совершение полезной работы электрогидравлического удара. Оставшаяся неизрас­ходованной энергия поступает на второй незаряженный конденса­тор С2, где и сохраняется для последующего использования (рис. 3.2). После этого энергия дозаряженного до требуемого
значения потенциала второго конденса­тора С2, пройдя через формирующий про­межуток ФП, разряжается на_ рабочий искровой промежуток РП и вновь неис­пользованная часть ее попадает теперь уже на первый конденсатор СУ и т. д.

Поочередное подсоединение каждого из конденсаторов то в зарядную, то в раз­рядную цепь производится переключате­лем /7, в котором токопроводящие пласти­ны А и В, разделенные диэлектриком, по­очередно подсоединяются к контактам 1-4 зарядного и разрядного контуров.

Схема и теории действии

Как показано на рис. 3.2, трансформатор с ограничением по току Т1 соединен с мостовым выпрямителем D1-D4 и заряжает внешний накопитель – конденсатор С через резистор защиты от перенапряжения R18. Внешний накопительный конденсатор соединен между землей разряда и электродом искрового разрядника G1. Нагрузка в этом проекте включена не стандартно, а между землей разряда и электродом искрового разрядника G2. Обратите внимание, что нагрузка комплексная, обычно обладающая высокой индуктивностью (не во всех случаях) с небольшим активным сопротивлением от провода индуктивности Load. Электроды искрового разрядника G1 и G2 расположены на расстоянии, большем в 1,2-1,5 раза, чем расстояние пробоя при данном напряжении.

Третий запускающий электрод ТЕ1 разряжается коротким высоковольтным импульсом малой энергии в G2, создавая пик напряжения, ионизирующий

Рис. 3.2. Принципиальная схема импульсного генератора

Примечание:

Специальное замечание относительно диодов D14, D15. Полярность может бьггь изменена для получения боль- шеготриггерного эффекта при нагрузке с низким импедансом, как это имеет место вслучае устройства деформации консервных банок, взрывания провода, плазменного оружия и др.

Внимание! При слишком высоком импедансе нагрузки энергия может направиться назад через диоды и трансформатор Т2 и привести к выходу из строя этих компонентов.

Обратите внимание, что земля схемы и общий провод изолированы друг от друга.

Земля разряда соединена с шасси и заземлением через зеленый провод шнура питания.

Для обеспечения большей безопасности в качестве выключателя S3 рекомендуется использовать кнопки без фиксации, которая включена только в нажатом состоянии.

Если устройство находится в месте, куда имеет доступ неавторизованный персонал, рекомендуется в качестве S4 использовать включатель с замком.

зазор между G1 и G2, что приводит к разряду накопленной во внешнем емкостном накопителе энергии в нагрузку с комплексным сопротивлением.

Напряжение заряда внешнего емкостного накопителя задается цепью рези- стивного делителя R17, который также выдает сигнал для вольтметра Ml. Напряжение заряда задается последовательно соединенным с R17 управляющим переменным сопротивлением R8. Этот управляющий сигнал устанавливает уровень выключения компаратора II, который задает смещение по постоянному току транзистора Q1. В свою очередь, Q1 управляет реле, при этом реле выключается. Контактами обесточенного реле RE1 снимается подача энергии на первичную обмотку Т1. Когда R8 установлено на заданную величину, оно автоматически поддерживает определенный уровень напряжения во внешних емкостных накопителях. Безопасная кнопка S3 предоставляет возможность задержать заряд внешнего конденсатора вручную.

Красный светодиод LA1 загорается при включении питания. Желтый свето- диод LA2 загорается, когда заряд достигает заданной величины.

Цепь запускающего электрода представляет собой специальную систему емкостного разряда (CD), где энергия конденсатора С6 направляется в первичную обмотку импульсного трансформатора Т2. На вторичной обмотке Т2 генерируется последовательность положительных импульсов высокого напряжения, которая подается на конденсаторы С8 и С9 через развязывающие диоды D14 и D15. Эти импульсы постоянного тока высокого напряжения вызывают ионизацию в зазорах за счет разряда через запускающий электрод ТЕ1. На входе этой цепи находится удвоитель напряжения, состоящий из конденсаторов С4, С5 и диодов D8 и D9. Переключатель «Пуск» S1 подает энергию в цепь, вызывая немедленное срабатывание искрового разрядника. Кремниевый триодный тиристор SCR снимает заряд с С6, отпирающий ток на SCR подает динистор DIAC, смещение на который задается переменным сопротивлением R14 и конденсатором С7.

Понижающий трансформатор напряжения 12 В ТЗ питает управляющую цепь, включающую и реле RE1. Если в системе нет напряжения 12 В, запустить ее можно только активировав RE1 вручную. Выпрямитель на диодах D10-D13 выпрямляет переменное напряжение 12 В, который затем фильтруется на емкостном фильтре С1. Резистор R5 развязывает питание для управления через стабилитрон Z3, Z4, который необходим для стабильной работы цепи компаратора. Питание для накопления энергии идет от сети 115 В переменного тока, при этом задействован плавкий предохранитель F1, а включение сети питания 115 В переменного тока осуществляется выключателем S4.

Замечание

В нашей лаборатории в Information Unlimited аппаратура накопления энергии включает 10 стоек масляных конденсаторов. В каждой стойке размещается 50 конденсаторов по 32 мкФ на напряжение 4500 В, соединенных параллельно для достижения общей емкости 1600 мкФ или около 13000 Дж при 4000 В на стойку. Все 10 стоек, соединенных параллельно, дают 130000 Дж. Очень важно при таких уровнях энергии правильно выполнить соединения и собрать систему с соблюдением необходимого расположения и толщины проводов для получения импульсов мощностью в сотни мегаватт. Для защиты персонала от опасного напряжения вокруг накопительных стоек установлены противовзрывные щиты.

Время заряда одной стойки составляет около 10 мин. При таком заряде использование 10 стоек было бы непрактично, поскольку для их заряда потребовалось бы почти 2 ч. Мы используем систему заряда тока 10000 В, 1 А, которая позволяет обеспечить заряд всех 10 стоек масляных конденсаторов для накопления энергии в 130000 Дж в течение 1 мин. Такое высоковольтное зарядное устройство можно приобрести по специальному заказу.

Порядок предварительной сборки устройства

В данном разделе предполагается, что вы знакомы с основными инструментами и имеете достаточный опыт сборки. Импульсный генератор собирается на металлическом шасси 25,4×43,2×3,8 см, изготовленном из оцинкованного железа толщиной 1,54 мм (калибр 22). Он использует трансформатор RMS с ограничением по току 6500 В, 20 мА. Нужно как можно точнее следовать приведенному чертежу. Можно использовать более мощный трансформатор, тогда придется изменить и размер устройства. Предлагаем соединить параллельно до 4 использовавшихся ранее трансформаторов; чтобы получить зарядный ток 80 мА. На передней панели устанавливается вольтметр и средства управления. Рекомендуется заменить S4 на выключатель с замком, если устройство находится в месте, куда имеет доступ неавторизованный персонал.

При сборке устройства соблюдайте следующую последовательность действий:

1. Если вы приобрели набор, разложите и идентифицируйте все компоненты и конструктивные детали.

2. Вырежьте из заготовки плату с сеточной перфорацией 0,25 см и размерами 15,9×10,8 см (6,25×4,25 дюйма).

Рис. 3.3. Монтажная плата импульсного генератора

Примечание:

Пунктирная линия показывает соединения на тыльной стороне платы. Крупные черные точки показывают отверстия в плате, которые используются для установки компонентов и соединений между ними.

3. Вставьте элементы, как показано на рис. 3.3, и припаяйте их к выводам элементов, к тем контактным площадкам, где это необходимо, по мере движения от левого нижнего края вправо. Пунктирная линия показывает соединения проводов на тыльной стороне платы в соответствии с принципиальной схемой. Избегайте проволочных мостов, потенциальных замыканий и холодной пайки, поскольку это неизбежно вызовет проблемы. Паяные соединения должны быть блестящими и гладкими, но не шарообразными.

4. Соедините монтажную плату проводами со следующими точками (см. рис. 3.3):

– с землей шасси проводом в виниловой изоляции #18 длиной 20 см;

– с ТЕ1 проводом высокого напряжения 20 кВ длиной 10 см;

– с резистором R18, проводом в виниловой изоляции #18 длиной 20 см;

– с анодами D3 и D4 проводом в виниловой изоляции #18 длиной 30 см (земля схемы);

– с ТЗ (2) 12 В постоянного тока проводом в виниловой изоляции #22 длиной 20 см;

– с вольтметром М1 (2) проводом в виниловой изоляции #22 длиной 20 см. Проверьте все соединения, компоненты, расположение всех диодов, полупроводниковых элементов, электролитических конденсаторов CI, С2, С4, С5, С7. Проверьте качество паек, потенциальные короткие замыкания, наличие мест холодной пайки. Паяные соединения должны быть гладкими и блестящими, но не шарообразными. Тщательно проверьте это, прежде чем включать устройство.

5. Сборка искрового разрядника осуществляется следующим образом (рис. 3.4):

– изготовьте базу BASE1 из листа оцинкованного железа толщиной 1,4 мм (калибр 20) и размерами 11,4×5 см (4,75×2 дюйма);

– изготовьте две скобы BRKT1 из листа оцинкованного железа толщиной 1,4 мм (калибр 20) размерами 6,4×3,2 см (2,5×1,25 дюйма) каждая. Загните край в виде козырька размером 1,9 см;

– изготовьте два блока BLK1 из поливинилхлорида (PVC) или другого аналогичного материала толщиной 1,9 см и размерами 2,5×3,2 см (1×1,25 дюйма). Они должны обладать хорошими изолирующими свойствами;

– изготовьте блок BLK2 из тефлона. Он должен выдерживать запускающий импульс высокого напряжения;

– аккуратно припаяйте фланцы COL1 к скобам BRK1. Отрегулируйте арматуру так, чтобы обеспечить точное выравнивание вольфрамовых электродов после сборки устройства. На этом этапе вам придется использовать газовую паяльную лампу на пропане и т.п.;

– сточите острые концы с восьми винтов. Это необходимо для предотвращения поломки материала PVC из-за коронного разряда, образующегося на острых концах при высоком напряжении;

– предварительно соберите детали, просверлите в них необходимые отверстия для сборки. Для правильного размещения следуйте рисунку;

Рис. 3.4. Искровой разрядник и устройство зажигания

Примечание:

Искровой разрядник является сердцем системы, и именно там энергия, накопленная конденсаторами за весь период заряд а, быстро высюобомиается в нагрузку в виде обладающего высокой мощностью импульса. Очень важно, чтобы все соединения были способны выдерживать большие токи и высокое напряжение разряда.

Показанный здесь прибор предназначен для НЕР90 и способен обеспечивать переключение при энергии до 3000 Дж (при правильно отрегулированном импульсе), чего обычно достаточно для эффективного проведения экспериментов с устройствами перемещения масс, сгибания банок, взрывания проводов, магнетизма и других аналогичных проектов.

По специальному заказу может быть поставлен переключатель высокой энергии, способный работать с энергией 20000Дж. Оба переключателя используют высоковольтный запускающий импульс, который зависит от высокого импеданса нагрузки линии. Обычно это не является проблемой для нагрузок сумеренной индуктивностью, но может стать проблемой при малой индуктивности. Эту проблему можно решить, если поместить несколько ферритовых или кольцевых сердечников в эти линии. Сердечники реагируют на запускающий импульс очень сильно, но при основном разряде достигают насыщения.

Конструкция искрового разрядника должна учитывать механические силы, которые возникают в результате действия сильных магнитных полей. Это очень важно при работе с ф дхжой энергией и потребует дополнительных средств для уменьшения индуктивности и сопротивления.

Внимание! При проведении экспериментов вокруг устройства должен быть установлен экран для защиты оператора от возможных осколков при поломке устройства.

Для надежного запуска запускающий зазор должен быть установлен в зависимости от напряжения заряд а. Зазор должен быть расположен не менее чем в 0,6 см от скобы. Если включение нестабильно, нужно поэкспериментировать с этой величиной.

– присоедините большие блочные наконечники LUG1 к каждой стороне скоб BRKT1. Соединение должно быть выполнено тщательно, поскольку импульсный ток достигает величины килоампер;

– временно установите основной зазор на величину 0,16 см, а запускающий зазор – на величину 0,32 см.

Порядок окончательной сборки устройство

Ниже указаны этапы окончательной сборки:

1. Изготовьте шасси и панель, как показано на рис. 3.5. Разумно будет проделать в панели квадратное отверстие для установки вольтметра до изготовления панели. Вольтметр, который используется, требует квадратного отверстия со стороной 10 см. Другие, более мелкие отверстия могут быть определены по чертежу и просверлены после соединения шасси и панели.

Примечание:

Изготовьте переднюю панель из листа оцинкованного железа толщиной 1,54 см (калибр 22) размерами 53,34×21,59 см (21×8,5 дюйма). Загните с каждой стороны по5 см для соединения с шасси, как показано на рисунке. Проделайтеотверстиедля вольтметра.

Изготовьте шасси из оцинкованного железа толщиной 1,54 см (калибр 22) размерами55,88×27,9см (22×15 дюйма). Загните с каждой стороны по 5 см и сделайте козырек 1,25 см. Общий размер будет (25x43x5см) с козырьком 1,25 см по дну шасси.

Более мелкие отверстия и отверстия для соединений выполняйте по ходу дальнейшей работы.

Идущий поданной части шасси козырек на рисунке не показан.

Рис. 3.5. Чертеж для изготовления шасси

2. Примерьте контрольную панель и просверлите необходимые отверстия для средств управления, индикаторов и т.д. Обратите внимание на изоляционный материал между шасси и частями устройства, см. на рис. 3.6 часть PLATE1. Этого можно добиться с помощью небольшого количества силиконового клея-герметика RTV с комнатной температурой вулканизации. Просверливайте соответствующие отверстия по мере выполнения работы, проверяя правильность расположения и габаритов.

Рис. 3.6. Общий вид устройства в сборе

Примечание:

Провода показаны несколько удлиненными, чтобы обеспечить ясность изображений и соединений.

Пунктирные линии показывают элементы и соединения, расположенные под шасси.

3. Примерьте остальные части (см. рис. 3.6) и просверлите все необходимые для монтажа и размещения отверстия. Обратите внимание на держатели плавких предохранителей FH1 /FS1 и изоляцию шнура входного питания BU2. Они расположены на нижней стороне шасси и показаны пунктирными линиями.

4. Обеспечьте достаточное пространство для высоковольтных компонентов: для выходных контактов трансформатора, диодов высокого напряжения и резистора R18. Обратите внимание, что высоковольтные диоды устанавливаются на пластиковую плату с помощью двухсторонней липкой ленты RTV.

5. Установите на место контрольную панель. Закрепите монтажную плату с помощью нескольких кусочков ленты с нанесенным на нее клеем-герме- тиком RTV, когда убедитесь, что все нормально.

6. Выполните все соединения. Обратите внимание на использование гаек для провода при подключении выводов Т1 и Т2.

Предварительные электрические испытания

Для проведения предварительных электрических испытаний выполните следующие действия:

1. Закоротите выходные контакты трансформатора с помощью высоковольтного провода с зажимом.

2. Удалите плавкий предохранитель и установите в его держатель барретер 60 Вт (электровакуумный прибор для стабилизации тока) в качестве балластного сопротивления на период тестирования.

3. Установите переключатель S4 (см. рис. 3.7) в выключенное состояние, переведите ось совмещенного с переменным сопротивлением R8/S2 выключателя в положение «выключено», установите переменные сопротивления R14 и R19 в среднее положение и включите устройство в сеть 115 В переменного тока, вставив вилку шнура питания COl в розетку.

4. Поворачивайте ось совмещенного выключателя с переменным сопротивлением R8 до включения и наблюдайте, как загораются лампы LA1 и LA2.

5. Нажмите кнопку заряда S3 и удостоверьтесь, что реле RE1 включилось (слышен звук щелчка) и лампа LA2 погашена на время, пока нажата кнопка S3.

6. Включите S4 и нажмите S3, заметьте, что барретер, включенный в соответствии с пунктом 2, горит в полнакала.

7. Нажмите кнопку «Пуск» S1 и наблюдайте вспышку между запускающим электродом ТЕ1 и основным зазором разряда между G1 и G2. Обратите

Рис. 3.7. Передняя панель и органы управления

внимание, что ось переменного сопротивления установлена в среднее значение, но, поворачивая ось по часовой стрелке, можно увеличить разряд.

Основные испытания

Для проведения испытаний выполните следующие действия:

1. Выньте шнур питания из сети и выключите S2 и S4.

2. Подсоедините конденсатор 30 мкФ, 4 кВ и резистор 5 кОм, 50 Вт в качестве С и R, как показано на рис. 3.6.

3. Удалите балластную лампу и вставьте плавкий предохранитель 2 А.

4. Установите запускающий зазор на величину 0,32 см, а основной зазор – на 0,16 см.

5. Подключите вольтметр высокого класса точности через внешний конденсатор.

6. Включите устройство и включите S2 и S4. Нажмите кнопку S3 и убедитесь, что внешний конденсатор заряжается до величины 1 кВ до отключения RE1. Заметьте, что в нормальном состоянии LA2 горит и выключается только на время цикла заряда. Когда будет достигнут заданный заряд, светодиод LA2 снова включается, показывая, что система готова.

7. Поверните R8/S2 на 30° по часовой стрелке и заметьте, что напряжение достигает большей величины перед прекращением заряда.

8. Нажмите кнопку S1 и наблюдайте мгновенную мощную дугу в основном зазоре, которая возникает, когда энергия направляется во внешнюю нагрузку.

9. Зарядите устройство до 2500 В, измеряя напряжение по внешнему вольтметру, подсоединенному через конденсатор. Отрегулируйте R19, чтобы вольтметр на передней панели показывал значение 2,5 при полной шкале 5. Сделайте пометку на передней панели, чтобы знать, где напряжение составляет 2500 В. Теперь прибор на передней панели с достаточной степенью точности показывает значение напряжения заряда при достаточной точности внешнего вольтметра. Повторите шаг 8, наблюдая интенсивную дугу при разряде. Повторите циклы заряда и разряда при разных напряжениях, чтобы ознакомиться с управлением прибором.

На этом завершается проверка и калибровка устройства. Дальнейшие операции потребуют дополнительного оборудования, в зависимости от проекта, в рамках которого вы экспериментируете.

Полезные дли донного оборудования математические соотношения

Энергия системного накопителя:

Идеальный подъем тока достигается в системах LC. Используйте коэффициент 0,75 при использовании масляных конденсаторов и более низкие значения для фото- и электролитических конденсаторов. Время достижения пикового тока на 1 А цикла:

Магнитный поток

А = площадь грани катушки в м 2 ; Le = расстояние между полюсами в м; М = масса в кг. Сила:

Ускорение: Скорость:

где t – время достижения пикового тока.

Все рассмотренные выше генераторы высокого напряжения имели в качестве накопителя энергии конденсатор. Не меньший интерес представляют устройства, использующие в качестве та­кого элемента индуктивности.

В подавляющем большинстве конструкции подобного рода преобразователей ранних лет содержали механический коммута­тор индуктивности. Недостатки такого схемного решения очевид­ны: это повышенный износ контактных пар, необходимость их периодической чистки и регулировки, высокий уровень помех.

С появлением современных бьютродействующих электрон­ных коммутаторов конструкции преобразователей напряжения с коммутируемым индуктивным накопителем энергии заметно уп­ростились и стали конкурентоспособными.

Основой одного из наиболее простых вьюоковольтных ге­нераторов (рис. 12.1) является индуктивный накопитель энер­гии .

Рис. 12.1. Электрическая схема высоковольтного генератора на основе индуктивного накопителя энергии

Генератор прямоугольных импульсов собран на микросхеме 555 {КР1006ВИ1). Параметры импульсов регулируются потенцио­метрами R2 и R3. Частота импульсов управления также зависит от емкости времязадающего конденсатора 01. Импульсы с выхода генератора подаются через резистор R5 на базу ключевого (ком­мутирующего) элемента - мощного транзистора VT1.

Этот транзистор в соответствии с длительностью и частотой следования управляющих импульсов коммутирует первичную об­мотку трансформатора Т1.

В итоге на выходе преобразователя формируются импульсы вьюокого напряжения. Для защиты транзистора VT1 {2N3055 - КТ819ГМ) от пробоя желательно параллельно переходу эмит­тер - коллектор подключить диод, например, типа КД226 (като­дом к коллектору).

Высоковольтный генератор (рис. 12.2), разработанный в Болгарии, также содержит задающий генератор прямоугольных импульсов на микросхеме 555 {К1006ВИ1). Частота импульсов плавно регулируется резистором R2 от 85 до 100 Гц. Эти им­пульсы через RC-цепочки поступают на ключевью элементы на транзисторах VT1 и VT2. Стабилитроны VD3 и VD4 защища­ют транзисторы от повреждения при работе на индуктивную нагрузку.

Рис. 12.2. Схема генератора высокого напряжения на основе ин­дуктивного накопителя энергии

Генератор вьюокого напряжения (рис. 12.2) может быть ис­пользован как самостоятельно - для получения вьюокого напря­жения (обычно до 1…2 кВ), либо как промежуточная ступень «накачки» других преобразователей.

Транзисторы BD139 можно заменить на КТ943В.

В качестве ключевых элементов преобразователей с ин­дуктивным накопителем энергии долгие годы использовали мощные биполярные транзисторы. Их недостатки очевидны: до­вольно высоки остаточные напряжения на открытом ключе, как следствие, потери энергии, перегрев транзисторов.

По мере совершенствования полевых транзисторов послед­ние начали оттеснять биполярнью транзисторы в схемах источни­ков питания, преобразователях напряжения.

Для современных мощных полевых транзисторов сопротив­ление открытого ключа может достигать десятью…сотью доли Ома, а рабочее напряжение достигать 1 …2 кВ.

На рис. 12.3 приведена электрическая схема преобразова­теля напряжения, выходной каскад которого выполнен на полевом транзисторе MOSFET. Для согласования генератора с полевым транзистором включен биполярный транзистор с большим коэф­фициентом передачи.

Электрическая схема генератора высоковольтных им­пульсов с ключевым полевым транзистором

Задающий генератор собран на /СМО/7-микросхеме CD4049 по типовой схеме. Как сами выходные каскады, так и каскады формирования управляющих сигналов, показанные на рис. 12.1 - 12.3 и далее, взаимозаменяемы и могут быть использованы в лю­бом сочетании.

Выходной каскад генератора вьюокого напряжения системы электронного зажигания конструкции П. Брянцева (рис. 12.4) вы­полнен на современной отечественной элементной базе .

При подаче на вход схемы управляющих импульсов транзи­сторы VT1 и VT2 кратковременно открываются. В результате ка­тушка индуктивности кратковременно подключается к источнику

Рис. 12.4. Схема выходного каскада генератора высокого напря­жения П. Брянцева на составном транзисторе

Рис. 12.5. Электрическая схема генератора высокого напряжения с задающим генератором на основе триггеров Шмитта

питания. Конденсатор С2 сглаживает пик импульса напряжения. Резистивный делитель (R3 и R5) ограничивает и стабилизирует максимальное напряжение на коллекторе транзистора VT2.

В качестве трансформатора Т1 использована катушка зажи­гания Б115. Ее основные параметры: Ri=1,6 Ом, \

Следующие две схемы вьюоковольтных генераторов нап­ряжения с использованием индуктивных накопителей энергии (рис. 12.5, 12.6) разработал Andres Estaban de la Plaza .

Первое из устройств содержит задающий генератор прямоугольных импульсов, промежуточный и выходной каскад, вьюоковольтный трансформатор.

Электрическая схема генератора высокого напряжения с задающим генератором на основе операционного усилителя

Задающий генератор выполнен на основе триггера Шмитта (КМО/7-микросхема типа 4093). Использование триггера Шмитта вместо логических элементов НЕ (см. например, рис. 12.3) позво­ляет получить импульсы с более крутыми фронтами, и, следова­тельно, снизить потери энергии на ключевых элементах.

Согласование КМО/7-элементов с силовым транзистором VT2 осуществляется предусилителем на транзисторе VT1. Вы­ходной трансформатор Т1 коммутируется силовым биполярным транзистором VT2. Этот транзистор установлен на теплоотводя-щей пластине.

Частота импульсов генератора ступенчато изменяется пе­реключателем SA1. Соотношение между длительностью импуль­са и паузой и частоту следования импульсов плавно регулируют потенциометрами R1 и R2.

Переключателем SA2 включают/отключают резистор R6, включенный последовательно с первичной обмоткой повышаю­щего трансформатора. Тем самым ступенчато регулируют выход­ную мощность преобразователя.

Рабочая частота генератора в его пяти поддиапазонах ре­гулируется в пределах 0,6…8,5 кГц; 1,5…20 кГц; 5,3…66 кГц; A3…МО кГц; 43…>200 кГц.

Первичная обмотка трансформатора Т1, намотанная на сердечнике от трансформатора строчной развертки, имеет 40 витков диаметром 1,0 мм. Выходное напряжение преобразовате­ля на частотах ниже 5 кГц составляет 20 кВ, в области частот 50…70 кГц выходное напряжение снижается до 5… 10 /св.

Выходная мощность высокочастотного сигнала устройства может доходить до 30 Вт. В этой связи при использовании данной конструкции, например, для газоразрядной фотосъемки необхо­димо принять особые меры по ограничению выходного тока.

Вьюоковольтный генератор, рис. 12.6 , имеет более сложную конструкцию.

Его задающий генератор выполнен на операционном уси­лителе DA1 {СА3140), Для питания задающего генератора и бу­ферного каскада (микросхема DDI типа 4049) используется стабилизатор напряжения на 12 S на интегральной микросхеме DA2 типа 7812.

Предоконечный каскад на комплиментарных транзисторах VT1 и VT2 обеспечивает работу оконечного - на мощном транзи­сторе VT3.

Соотношение длительность/пауза регулируют потенциомет­ром R7, а частоту импульсов - потенциометром R4.

Частоту генерации можно изменять ступенчато - переклю­чением емкости конденсатора С1. Начальная частота генерации близка к 20 кГц.

Первичная обмотка доработанного трансформатора строч­ной развертки имеет 5… 10 витков, ее индуктивность примерно 0,5 мГн. Защита выходного транзистора от перенапряжения осуществляется включением варистора R9 параллельно этой обмотке.

Транзистор 2N2222 можно заменить на КТ3117А, КТ645; 2N3055 - на КТ819ГМ; BD135 - на КТ943А, BD136 - на КТ626А, диоды 1N4148 - на КД521, КД503 и др. Микросхему DA2 можно заменить отечественным аналогом - КР142ЕН8Б{Д); DDI - К561ТЛ1.

Следующим видом генераторов вьюоковольтного напряже­ния являются автогенераторнью преобразователи напряжения с индуктивной обратной связью.

Импульсный преобразователь с самовозбуждением выра­батывает пакеты высокочастотных высоковольтных колебаний (рис. 12.7) .

Рис. 12.7. Электрическая схема импульсного преобразователя напряжения с самовозбуждением

Автогенератор импульсов высокого напряжения на транзи­сторе VT1 получает*сигнал обратной связи с трансформатора Т1 и в качестве нагрузки имеет катушку зажигания Т2. Частота гене­рации - около 150 Гц. Конденсаторы С*, С2 и резистор R4 опре­деляют режим работы генератора.

Трансформатор Т1 выполнен на магнитопроводе Ш 14×18. Обмотка I состоит из 18 витков провода ПЭВ-2 0,85 мм, намотан­ных в два провода, а II - из 72 витков провода ПЭЛШО 0,3 мм.

Стабилитрон VD2 укреплен в центре дюралюминиевого ра­диатора размерами 40x40x4 мм. Этот стабилитрон можно заме­нить цепочкой мощных стабилитронов с суммарным напряжением стабилизации 150 В. Транзистор VT1 также установлен на радиа­торе размерами 50x50x4 мм.

Резонансный преобразователь напряжения с самовозбуж­дением описан в работе Е. В. Крылова (рис. 12.8). Он выполнен на высокочастотном мощном транзисторе VT1 типа КТ909А .

Трансформатор преобразователя выполнен на фторопла­стовом каркасе диаметром 12 мм с использованием ферритового стержня 150ВЧ размером 10×120 мм. Катушка L1 содержит 50 витков, L2 - 35 витков провода ЛЭШО 7×0,07 мм. Катушки низко­вольтной половины устройства имеют по одному витку провода во

Рис. 12.8. Схема резонансного высоковольтного генератора с трансформаторной обратной связью

фторопластовой (политетрафторэтиленовой) изоляции. Они на­мотаны поверх катушки L2.

Выходное напряжение преобразователя составляет 1,5 кВ (максимальное - 2,5 кВ). Частота преобразования - 2,5 МГц. Потребляемая мощность - 5 Вт. Выходное напряжение устройст­ва изменяется от 50 до 100% при увеличении напряжения питания с 8 до 24 В.

Конденсатором переменной емкости 04 трансформатор настраивают на резонансную частоту. Резистором R2 устанавли­вают рабочую точку транзистора, регулируют уровень положи­тельной обратной связи и форму генерируемых сигналов.

Преобразователь безопасен в работе - при низкоомной на­грузке вьюокочастотная генерация срывается.

Следующая схема вьюоковольтного источника импульсно­го напряжения с двухкаскадным преобразованием показана на рис. 12.9 . Электрическая схема его первого каскада доста­точно традиционна и практически не отличается от рассмотрен­ных ранее конструкций.

Отличие устройства (рис. 12.9) заключается в использова­нии второго каскада повышения напряжения на трансформаторе. Это заметно повышает надежность устройства, упрощает конст­рукцию трансформаторов и обеспечивает эффективную изоля­цию между входом и выходом устройства.

Трансформатор Т1 выполнен на Ш-образном сердечнике из трансформаторной стали. Сечение сердечника составляет

Рис. 12.9. Схема высоковольтного преобразователя с трансфор­маторной обратной связью и двойным трансформатор­ным преобразованием напряжения

16×16 мм. Коллекторные обмотки I имеют 2×60 витков провода диаметром 1,0 мм.

Катушки обратной связи II содержат 2×14 витков провода диаметром 0,7 мм. Повышающая обмотка III трансформатора Т1, намотанная через несколько слоев межслойной изоляции, имеет 20… 130 витков провода диаметром 1,0 мм. В качестве выходного (вьюоковольтного) трансформатора использована катушка зажи­гания автомобиля на 12 или 6 В.

К генераторам вьюокого напряжения с индуктивными нако­пителями энергии следует отнести и устройства, рассмотреннью ниже.

Для получения вьюоковольтных наносекундных импульсов В. С. Белкиным и Г. И. Шульженко была разработана схема формирователя на дрейфовых диодах и насыщающейся индуктивностью с однотактным преобразователем, синхронизи­рованным с формирователем, а также показана возможность со­вмещения функций ключа формирователя и преобразователя.

Схема преобразователя, синхронизированного с формиро­вателем, приведена на рис. 12.10; вариант схемы формирователя с раздельными ключевыми элементами приведен на рис. 12.11, а временные диаграммы, характеризующие работу отдельных уз­лов схемы формирователя, - на рис. 12.12.

Задающий генератор прямоугольных импульсов (рис. 12.10) вырабатывает импульсы, отпирающие транзисторный ключ VT1

Рис. 12.10. Схема формирователя высоковольтных импульсов с общим ключом для преобразователя и формирователя

Рис. 12.11. Фрагмент схемы формирователя высоковольтных им­пульсов с раздельными ключами

Рис. 12.12. Временная диаграмма работы преобразователя

на время 1н и запирающие на время \^ (рис. 12.12). Их сумма опре­деляет период повторения импульсов. За время через дроссель L1 протекает ток I„. После запирания транзистора ток через диод VD1 заряжает накопительную емкость формирователя С1 до напряжения и^, диод VD1 закрывается и отсекает конденсатор С1 от источника питания.

В таблице 12.1 приведены данные по возможному исполь­зованию полупроводниковых приборов в формирователе вы­соковольтных импульсов. Амплитуда формируемых импульсов приведена для низкоомной нагрузки величиной 50 Ом.

Таблица 12.1. Выбор элементов для формирователей высоковольтных импульсов

Длительность им­пульса, НС

Амплитуда генерируемого импульса, В

КД204, КД226 {КТ858, КТ862)

ДЛ112-25{КТ847)

ДЛ122-40 {КП953)

КД213 {КТ847)

ДЛ132-80 {КП953)

Формирователи двухполярных импульсов на основе серий­ных диодов имеют амплитуду каждой полуволны 0,2… 1 кВ для согласованной нагрузки 50…75 Ом при полной длительности им­пульса 4…30 НС и частоте повторения до 20 кГц.