Электричество | Заметки электрика. Совет специалиста

Клеточная стенка. Строение растительной клетки. Клеточные стенки грибов

Расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий , архей , грибов и растений . Животные и многие простейшие не имеют клеточной стенки.

Клеточные стенки прокариот

Клеточные стенки бактерий состоят из пептидогликана (муреина) и бывают двух типов: грамположительного и грамотрицательного . Клеточная стенка грамположительного типа состоит исключительно из толстого слоя пептидогликана, плотно прилегающего к клеточной мембране и пронизанного тейхоевыми и липотейхоевыми кислотами . При грамотрицательном типе слой пептидогликана существенно тоньше, между ним и плазматической мембраной находится периплазматическое пространство , а снаружи клетка окружена ещё одной мембраной , представленной т. н. липополисахаридом и являющаяся пирогенным эндотоксином грамотрицательных бактерий.

Клеточные стенки грибов

Клеточные стенки водорослей

Клеточные стенки высших растений

Важнейшей отличительной особенностью растительной клетки является наличие прочной клеточной стенки, основным компонентом которой является целлюлоза. Клеточная стенка высших растений представляет собой сложноорганизованный, преимущественно полимерный, внеклеточный матрикс, окружающий каждую клетку. Растительная клетка, лишённая клеточной стенки, обозначается термином протопласт . В клеточных стенках растений существуют углубления - поры, через которые проходят цитоплазматические канальца - плазмодесмы , осуществляющие контакт соседних клеток и обмен веществами между ними.

Химический состав и пространственная организация полимеров клеточной стенки отличаются у разных видов, клеток разных тканей одного растения и иногда у разных частей стенки вокруг одного протопласта.

Кроме того, строение клеточной стенки изменяется в онтогенезе растительного организма. Первичная клеточная стенка формируется при делении и сохраняется во время роста клетки. Формирование вторичной клеточной стенки происходит с внутренней стороны от первичной стенки и связано с окончанием роста и специализацией (дифференцировкой) клеток растения. Снаружи от первичной клеточной стенки, между первичными стенками двух соседних клеток, располагается срединная пластинка (состоит преимущественно из кальциевых и магниевых солей пектиновых веществ).

Первичная клеточная стенка высших растений состоит из трёх взаимодействующих, но структурно независимых трехмерных сетей полимеров. Основная сеть состоит из фибрилл целлюлозы и связывающих их гемицеллюлоз (или сшивочных гликанов). Вторая сеть состоит из пектиновых веществ . Третья сеть представлена, как правило, структурными белками клеточной стенки. Также следует отметить, что у растений клады commelinids (группа в системах APG) и у представителей семейства Маревые первичная клеточная стенка содержит значительное количество ароматических веществ (гидроксикоричные кислоты , главным образом феруловая и п -кумаровая). При этом у представителей клады commelinids гидроксикоричные кислоты присоединяются к сшивочным гликанам (к глюкуроноарабиноксиланам), а у семейства Маревые к пектиновым веществам (к рамногалактуронанам I).

Растительные клеточные стенки выполняют целый ряд функций: они обеспечивают жёсткость клетки для структурной и механической поддержки, придают форму клетке, направление её роста и в конечном счете морфологию всему растению. Клеточная стенка также противодействует тургору, то есть осмотическому давлению, когда дополнительное количество воды поступает в растения. Клеточные стенки защищают от патогенов, проникающих из окружающей среды, и запасают углеводы для растения.

Клеточная стенка бактерий - это тонкая бесцветная структура, покрывающая клетку снаружи. У большинства бактерий она невидима в обыкновенный микроскоп без специальной обработки. Однако у крупных форм, например у серобактерии Beg. mirabilis, стенка заметна отчетливо. При явлении плазмолиза, который наступает при помещении клеток в 1-2 %-ный гипертонический раствор NaCl или раствор глюкозы, контуры стенки приобретают четкость и она хорошо видна при фазово-контрастной микроскопии.
Стенка бактериальной клетки составляет до 50 % сухой массы организма, толщина ее колеблется в пределах 20-80 нм. Клеточная стенка - плотная ригидная структура. Она обладает эластичностью и достаточной механической прочностью, выдерживает внутриклеточное осмотическое давление, достигающее 10-30 атм.
Химический состав клеточных стенок различных видов бактерий неодинаков, довольно сложен и отличает их не только от клеток растений и животных, но и друг от друга.
Основным компонентом клеточной оболочки высших растений и водорослей является целлюлоза. Из целлюлозы состоят, например, микрофибриллы большинства водорослей - до 50-80 % сухой массы оболочки клетки. В микрофибриллах клеточных оболочек большинства мицелиальных грибов преобладает хитин - полимер N-ацетилглюкозамина.
Совершенно иной химический состав имеют клеточные стенки бактерий. Такие соединения как целлюлоза и хитин не характерны для них. Правда, некоторые виды бактерий способны синтезировать целлюлозу и компоненты хитина. Так, у Sarcina ventriculi целлюлоза составляет толстый внешний слой клеточной стенки. Помимо Acetobacter xylinum, это единственный представитель прокариот, синтезирующий данный полимер. Компонент хитина ацетилглюкозамин обнаруживается у всех видов бактерий, за исключением некоторых архебакгерий.
В клеточных стенках бактерий содержится два класса новых, необычных соединений, присущих только прокариотам. Это пептидогликан и тейхоевые кислоты.

Пептидогликаны и тейхоевые кислоты. Пептидогликан, или муреин (от лат. myrus - стенка) представляет собой гетерополимер, состоящий из цепочек чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты (эфир молочной кислоты и N-ацетилглюкозамина), соединенных р-1,4-гликозидной связью. К карбоксильной группе мурамовой кислоты присоединен пептид, включающий чаще всего четыре аминокислоты - тетрапептид. Аминокислотный состав пептида различных видов бактерий не одинаков: у Staph, aureus содержится а-лизин, у Е. сой - мезо-диаминопимелиновая кислота, у Corynebacterium - 2-4-диаминомасляная (рис. 3.11).

Рис. 3.11. Структура пептидогликана стафилококка:
1- N-ацетилмурамовая кислота; 2 - N-ацетилглюко- замин; 3 - тетрапептид; 4 - глидоновый мостик

На основании аминокислотного состава пептидов и соединяющих их мостиков различают ряд подгрупп пептидогликана. Особенностью пептидной части этого полимера является наличие D-аминокислот (в белках они не встречаются) и высокое содержание диаминокислот. Обе аминогруппы, входящие в состав муреина диаминокислоты, участвуют в образовании пептидных связей - с D-аланином и аминокислотным мостиком. Посредством мостиков осуществляются поперечные сшивки пептидогликановых цепей. В итоге формируется гигантская молекула, напоминающая по виду мешок, состоящая из сети полисахаридных цепей, связанных множеством поперечных пептидных связей. За счет образования поперечных сшивок обеспечивается жесткая трехмерная пространственная организация молекулы, обусловливающая механическую прочность и ригидность клеточной стенки.
Пептидогликан чувствителен к литическому действию лизоцима, который расщепляет p-l-4-гликозидные связи между N-ацетилглюкозамином и N-ацетилмурамовой кислотой. Обработка бактерий лизоцимом приводит к разрушению сформированной клеточной стенки. Ингибитором синтеза пептидогликана является ряд антибиотиков: пенициллин, цефалоспорин, бацитрацин,
ванкомицин. К примеру, пенициллин подавляет активность фермента транспептидазы, катализирующего образование поперечных сшивок между образующимися цепями пептидогликана. Не сшитый полимер не используется для образования клеточной стенки бактерий.
Тейхоевые кислоты (от греч. «тейхос» - стенка) представляют собой растворимые в воде полимеры, состоящие из остатков трехатомного спирта глицерола или пятиатомного - рибитола, которые соединены друг с другом фосфодиэфирными связями (рис. 3.12). Цепи тейхоевых кислот могут содержать от 10 до 50 остатков спирта. Большинство тейхоевых кислот включают значительное количество D-аланина, аминогруппы которого придают тейхоевым кислотам амфотерные свойства. Кроме D-аланина свободные гидроксильные группы спиртов могут быть замещены глюкозой, N-ацетилглюкозамином, галактозой. Наличие свободных гидро-

ксилов фосфорной кислоты обусловливает сродство тейхоевых кис лот к двухвалентным катионам.


Рис.3.12. Структура тейхоевых кислот клеточной стенки:
а -глицеролтейхоевая; б - рибитолтеихоевая

Клетки одного штамма бактерий, как правило, содержат тейхоевую кислоту только одного типа: рибитолтейхоевую или глицеролтейхоевую. Эти уникальные соединения содержатся в клеточных стенках только грамположительных бактерий, где они прочно связаны с пептидогликаном. Так как тейхоевые кислоты представляют собой длинные линейные молекулы, они могут проходить через весь пептидогликановый слой до наружной части клетки и играть роль поверхностных антигенов, обусловливая, таким образом, антигенную специфичность клеточной поверхности бактерий. Кроме того, создавая в клеточной стенке высокую плотность строго ориентированных зарядов, тейхоевые кислоты оказывают влияние на проникновение ионов в клетку, обеспечивая высокую плотность двухвалентных катионов в области цитоплазматической мембраны. Это благоприятствует поддержанию физической целостности мембраны и ее связи с рибосомами.
У некоторых бактерий тейхоевые кислоты участвуют в регуляции активности автолитических ферментов, осуществляющих

в определенных условиях гидролиз муреина собственной клетки. Так, у пневмококков тейхоевые кислоты ингибируют действие литических ферментов клетки путем связывания с ними. Нарушение этой связи приводит клетки к лизису.
Пептидогликан является основным структурным компонентом клеточных стенок почти всех прокариот, за исключением архебактерий, у которых он либо совсем отсутствует, либо имеет иной химический состав. Например, у метанобразующих бактерий пептидогликан содержит вместо муреиновой кислоты талозоминуроновую, а пептидная часть не содержит D-аминокислот, состоит только из а-форм.
В зависимости от химического состава и структуры клеточной стенки все бактерии разделяют на грамположительные и грамотрицательные. Это основано на способности их окрашиваться фиолетовыми красителями трифенилметанового ряда кристаллвиолетом или генцианвиолетом - и не обесцвечиваться нейтральными растворителями - спиртом, ацетоном. Этот метод окраски введен впервые в 1884 г. датским врачом Христианом Грамом и окраска по Граму используется как важнейший таксономический признак бактерий. Сущность его состоит в следующем. Фиксированные клетки окрашиваются кристаллвиолетом или генцианвиолетом, затем протравливаются 30 с раствором Люголя (1 + KI), промываются спиртом, водой и докрашиваются 1 %-ным водным фуксином. Грамположительные бактерии приобретают синий цвет, грамотрицательные - красный.
По структуре и химическому составу клеточной стенки грамположительные бактерии существенно отличаются от грамотрицательных (табл. 2).
У грамположительных бактерий клеточная стенка представляет собой гомогенный электронно-плотный слой толщиной 20 - 80 нм. Основную массу (50-90 % сухого вещества) составляет пептидогликан, образующий ригидный толстый слой. Он плотно прилегает к ЦПМ. Пептидогликановый слой пронизан тейхоевыми кислотами, которые могут выходить на поверхность клеточной стенки. Кроме этих основных полимеров в клеточных стенках грамположительных бактерий содержатся в небольших количествах липиды, полисахариды, белки. Липиды и
полисахариды ковалентно связываются с пептидогликаном, образуя сложную, механически прочную структуру.
Таблица 2
Характеристика химического состава клеточных стенок бактерий

точная стенка грамотрицательных бактерий более тонкая (10-15 нм) и многослойная (рис.3.13). Внутренний слой представлен пептидогликаном, содержание которого значительно меньше (1-10 %), чем в стенках грамположительных бактерий. Толщина данного слоя 2-3 нм. Наружный слой более рыхлый и толстый - 8-10 нм, имеет сложный химический состав. В нем обнаружены белки, фосфолипиды и липополисахариды, расположенные мозаично. По структуре и химическому составу этот слой имеет сходство с цитоплазматической мембраной. Он получил название наружной мембраны и имеется только у грамотрицательных бактерий.
Наружная мембрана является дополнительным барьером, препятствующим проникновению в клетку крупных молекул. Так, она препятствует поступлению в клетку антибиотиков, в частности пенициллина, актиномицина Д. Вполне возможно, что по этой причине грамотрицательные бактерии менее чувствительны к антибиотикам, чем грамположительные.
Липополисахариды наружной мембраны определяют антигенную специфичность бактерий, а также служат рецепторами для адсорбции фагов.
Белки наружной мембраны выполняют разные функции. Одни из них, так называемые белки матриксапорины, формируют в

мембране гидрофильные поры, через которые осуществляется диффузия аминокислот, небольших олигосахаридов и пептидов (молекулярная масса от 600 до 900 Да6). Транспорт веществ через поры, образованные поринами, лишен специфичности. Порины являются также рецепторами для фагов и колицинов.


Вторая группа белков - минорные белки, как и предыдущая группа, выполняют транспортные и рецепторные функции. Важная роль отводится им в транспорте железосодержащих соединений в клетке разных видов грамотрицательных бактерий.

Таким образом, структура клеточной стенки грамотрицательных бактерий намного сложнее, чем грамположительных. Структурные особенности и химический состав клеточных стенок лежат в основе механизма окрашиваемости бактерий по Г раму.

Да - дальтон, или единица аггомной массы, равен 1,66033 х 10 1 кг.

Ответственность за окраску по Граму несут муреин и частично липиды, оказывающие влияние на проницаемость клеточной стенки. Обработка бактерий спиртом вызывает разбухание муреина и уменьшение диаметра пор клеточной стенки, что в целом приводит к снижению ее проницаемости. Так как грамположительные бактерии характеризуются высоким содержанием муреина, то в результате обработки спиртом стенки их становятся почти непроницаемыми для красителей и вымывание краски не происходит. У грамотрицательных слой муреина тонкий и не играет существенной роли в проницаемости стенки. Кроме того, проницаемость клеточной стенки у грамположительных бактерий увеличивается за счет растворения и вымывания липидов спиртом, содержание которых довольно высокое (до 22 %), и к тому же они хорошо растворяются в нейтральных органических растворителях. Все это способствует обесцвечиванию клетки. Доказательством того, что в окраске по Граму основную роль играет клеточная стенка, является тот факт, что при удалении ее с окрашенных клеток протопласты грамположительных бактерий при промывании спиртом обесцвечиваются, превращаясь в грамотрицательные. Следовательно, окрашенный комплекс удерживает клеточная стенка.
Клеточная стенка у грамотрицательных бактерий отделена от цитоплазматической мембраны электронно-прозрачным промежутком, получившим название периплазматического пространства, или периплазма. В нем содержатся кроме тонкого слоя муреина (2-3 нм) специфические белки, так называемые связывающие, или транспортные белки. Это водорастворимые белки, обладающие высоким сродством к определенным питательным субстратам - аминокислотам, сахарам, неорганическим ионам. Они являются составной частью систем активного транспорта, но самостоятельно осуществлять этот процесс они не могут и функционируют только в сочетании со специфическими пермеазами, локализованными в цитоплазматической мембране. Транспортные белки связывают соответствующие субстраты и переносят их от внешней мембраны к цитоплазматической. В периплазматическом пространстве содержится также ряд гидролитических ферментов - нуклеазы, щелочная и кислая фосфатазы, пенициллианаза. У грамположительных бактерий эти ферменты являются типичными экзоферментами, у грамотрицательных выход их из клеток задерживается наружной мембраной, которая является барьером для белков и некоторых других соединений. Наличие в периплазме ферментов позволяет клетке использовать более широкий круг веществ, поступающих извне. Так как данные ферменты изолированы от цитоплазмы, то содержание их не угрожает содержимому клетки подвергнуться автолизу, или самоперевариванию.
Важнейшие функции клеточной стенки заключаются в следующем. Она обеспечивает клетке определенное постоянство формы, защищает содержимое от ее внешних воздействий, определяет способность к адсорбции фагов, так как на ее поверхности расположены фагочувствительные рецепторы, играет важную роль и в реакции иммунитета. Установлено, что между фагоцитарной активностью лейкоцитов и поверхностной структурой бактериальных клеток существует определенная зависимость. Особенности структуры клеточной стенки определяют чувствительность бактерий к повреждающему действию сыворотки крови и форменных элементов.
Таким образом, клеточная стенка бактерий - сложная полифункциональная система, обладающая необходимыми реологическими свойствами (упругость, пластичность, прочность) и обеспечивающая анатомическую целостность клетки, геометрическую форму ее и контакт с внешней средой.

Вопрос

Ботаника- наука о строении, жизни растения и их сообществ краткая история ботаники и ее разделы.

Открытие клетки принадлежит английском ученому Гуку который впервые рассмотрел срез пробки под микроскопом. На срезе было видно что пробка состоит из многочисленных камер, клеток. В то же время Грю и Мальпиги впервые описали строение органов растений, подтвердив их клеточное строение. Они считали что клетки это пузырьки наполненные слизистым содержимым. Долгое время господствовало представление о том что основные жизненные свойства клетки связаны с ее стенкой. Содержимому клетки отводилась второстепенная роль. только в 19 веке когда накопилис данные о внутреннем содержимом клетки в 1831 Броун обнаружил в клетке ядро. К концу 30-х годов 19 в были открыты основные компоненты клетки и было сформулировано представление о клетке как о структурной единице живых организмов

Морфлогия- внешнее строение и внутреннее строение растений

Систематика- классификация разнообразия организмов

Цитология – наука о клетке

Гистология – наука о тканях

Эмбриология – учение об образовании и закономерностях развития зародыша растений

География – распределение растений на Земле

Геоботаника- наука о растительных сообществах

Экология – взаимоотношение растений с окр.редой

Вопрос 2

Клетка- основная структурная единица растений. Общий план строения растительной клетки. Вещества их локализации .

Многообразие клеток сводят к двум видам: паренхимным и прозенхимным.

Состав клетки:

Цитоплазма-в ней происходят все процесы клеточного обмена

Рибосомы- Располагаются на ЭПС и на наружной ядерной мембране, в цитоплазме, в пластидах, митохондриях.

Аппарат Гольджи- образован комплексом биологических мембран в виде узких каналов, расширяющихся на концах в цистерны

Митохондрии-образованы двумя мембранами: наружняя гладкая, а внутренняя образует выросты внутрь матрикса- кристы.

Лизосомы- ограниченны биологической мембраной шаровидные тельца

Пластиды- двумембранный органоид.Внутри находится строма пронизанная параллельно расположенными мембранами – тилакоидами

Вопрос 3

Ядро, строение и функции. Деление клетки. Митоз

Ядро- важнейшая клеточная структура, рерулирующая жизнедеятельность клетки. то место хранения и воспроизведения наследственной информации, определяющей признаки данной клетки и всего организма в целом. Ядро служит также центром управления обменом веществ и почти всех процессов, происходящих в клетке. Структура я дра однакова у всех эукариотических клеток: ядерная оболочка, Яденый сок, хроматин и ядрышко

Ядерная оболочка- Ядерная состоит из двух узких темных слоев - наружной и внутренней мембран. Наружняя ядерная мембрана переходит в ЭПС, на ней имеются рибосомы, она регулирует обме веществ между ядром и цитоплазмой

Ядерный сок- обеспечивает взаимосвязь между ядерными структурами.

Хромосомы - плотные удлиненные или нитевидные образования, видимые только при делении клетки. Содержат ДНК, в которой заключена наследственная информация, передающаяся из поколения в поколение

Ядрышко - сферической или неправильной формы. В них синтезируется РНК, которая входит в состав рибосомы

Деление клетки:

Митоз - непрямое деление клетки. Митоз состоит из 4 фаз: профазы, метафазы, анафазы, телофазы.

Первая фаза - профаза. В профазе хромосомы спирализуются, укорачиваются, утолщаются и становятся видны. Каждая хромосома состоит из двух хроматид. Они соединены центромерой. К концу профазы ядерная оболочка и ядрышки растворяются. Центриоли расходятся к полюсам клетки. Образуется веретено деления.

В метафазе хромосомы располагаются на экваторе. Хорошо видны число и форма хромосом. Нити веретена деления тянутся от полюсов к центромерам

В анафазе центромеры делятся и хроматиды (дочерние хромосомы) расходятся к разным полюсам. Движение хромосом происходит благодаря нитям веретена, которые, сокращаясь, растягивают дочерние хромосомы от экватора к полюсам.

Митоз заканчивается телофазой. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуются и становятся не видны

Вопрос 4

Пластиды. Типы пластид.

Пластиды это органеллы характерные только для растительных клеток. Они выполняют различные функции, связанные, главным образом, с синтезом органических веществ. В зависимости от окраски, обусловленной наличием пигментов, различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты.

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент хлорофилл. Главная функция хлоропластов - фотосинтез, в результате которого происходит образование богатых энергией органических веществ. Синтез хлорофилла обычно происходит только на свету, поэтому растения, выращенные в темноте или при недостатке света, становятся бледно-желтыми.

Хромопласты представляют собой пластиды, содержащие пигменты из группы каротиноидов, имеют желтую, оранжевую или красную окраску. К каротиноидам относят широко распространенные каротины (оранжевые) и ксантофиллы (желтые). Хромопласты имеют разнообразную форму. Они образуются в осенних листьях, корнеплодах (морковь), зрелых плодах и т.д. В отличие от хлоропластов, форма хромопластов очень изменчива, но видоспецифична, что объясняется их происхождением и состоянием в них пигментов.

Лейкопласты это мелкие бесцветные пластиды шаровидной, яйцевидной или веретеновидной формы. Они обычно встречаются в клетках органов, скрытых от солнечного света: в корневищах, клубнях, корнях, семенах, сердцевине стеблей.Часто лейкопласты собираются вокруг ядра, окружая его со всех сторон.

Деятельность лейкопластов специализирована и связана с образованием запасных веществ. Одни из них накапливают преимущественно крахмал, другие – белки а третьи – масла.

Вопрос 5

Клеточная стенка. Ее биологическое значение.

Клеточная стенка (оболочка) является неотъемлемым компонентом клеток растений и грибов и представляет собой продукт их жизнедеятельности. Она придает клеткам механическую прочность, защищает их содержимое от повреждений и избыточной потери воды, поддерживает форму клеток и их размер, а также препятствует разрыву клеток в гипотонической среде. Клеточная стенка участвует в поглощении и обмене различных ионов, т. е. является ионообменником. Через клеточную оболочку осуществляется транспорт веществ.

Клеточная стенка, формирующаяся во время деления клеток и их роста путем растяжения, называется первичной. После прекращения роста клетки на первичную клеточную стенку изнутри откладываются новые слои, и образуется прочная вторичная клеточная оболочка.

Лекция 7. КЛЕТКА 1. КЛЕТОЧНАЯ МЕМБРАНА,
КЛЕТОЧНАЯ СТЕНКА, ЯДРО

Перейдем от структурных формул к рассмотрению структур, которые можно увидеть хотя бы под микроскопом, пусть и электронным. Мы ознакомились с жизнью как со сложнейшим биохимическим предприятием по преобразованию сотен тысяч, если не миллионов, разных сложных органических молекул. Большое количество этих процессов происходит одновременно и совместно в одних и тех же растворах, и они разделены и предопределены исключительно специфичностью осуществляющих их ферментов. Но и из общих соображений ясно и мы уже встречались с тем, что во многих ситуациях разные части этого производства должны быть расположены в специальных цехах, в которых поддерживается специальная химическая среда (та же кислотность) и на поверхности которых определенным образом организованы ферменты.

И первое, в чем нуждается живая система, – это в локализации собственного пространства и отграничении от пространства окружающего. Иначе все вещества, включая ферменты, разойдутся по градиенту своей концентрации в окружающую среду (несомненно, водную, так как все живые процессы идут в водных растворах или гелях) и не смогут встретиться друг с другом. По-видимому, жизнь возникла не в воде как таковой, иначе бесконечное разведение не позволило бы ей сложиться, а в какой-то капельной среде – в грунте, пористых горных породах и т. д., где пространственная ограниченность обеспечивалась извне. О возникновении жизни можно говорить с того момента, когда первые самовоспроизводящиеся системы научились хоть в какой-то мере ограничивать себя самостоятельно. Основные теории, описывающие, как все это происходило, достойны специального рассмотрения, а пока нам нужно принять хозяйство по описи и рассмотреть, что мы имеем сегодня.

А сегодня мы имеем, что все живое организовано на основе элементарной и более или менее самодостаточной структурно-функциональной единицы – клетки. Причем каждый живой организм либо является клеткой, либо состоит из многих клеток и является колонией или государством клеток, как мы с вами (мы являемся государством ни много ни мало из миллиона миллиардов клеток).

Почти каждая клетка проявляет все основные свойства живого организма: она питается, растет, реагирует на внешние сигналы, взаимодействует с другими клетками, часто движется и еще чаще (но не всегда!) размножается.

Размножаются клетки посредством деления (иногда почкования, что, по сути, является неравным делением). Важно, что каждая клетка происходит от клетки же и не может возникнуть иным путем.

Все биохимические процессы, связанные с получением энергии и синтезом биологических органических веществ, происходят внутри клетки. Внутри клетки же хранится и реализуется генетическая информация.

Внутри клетки находятся сотни тысяч различных ферментов и других белков, но ограниченное число их видов может специально выделяться во внешнюю среду. Углеводы находятся или внутри клеток или снаружи. Жиры и липиды, как правило, находятся внутри клеток, но могут и выделяться наружу (допустим, в наших сальных железах). А вот нуклеиновые кислоты в норме всегда находятся только внутри клеток.

Поговорим о самом простом – о размере клеток. Исключения как в большую, так и в меньшую сторону поразительны, но обычные размеры клеток прокариот – 0,5–5 мкм, а эукариот – 10–50 мкм. Мы все хорошо знаем миллиметр – одна тысячная метра. Микрометр – это одна тысячная миллиметра. Таково подавляющее большинство клеток. Потому что именно это – оптимальный размер всего хозяйства, организованного как живая клетка. Исключения представляют собой особые случаи. Давайте же их рассмотрим.

Желток любого яйца – одна клетка – а именно яйцеклетка . Соответственно яйцеклетка вымершего (не без помощи человека) мадагаскарского страуса эпиорниса достигала в объеме 6 л. У таких клеток основное клеточное хозяйство размазано в виде пластиночки на одной из сторон, все остальное пространство занято запасным веществом – желтком, представляющим собой определенные запасные белки (преимущественно лецитин), кроме того, в нем довольно много запасенной впрок матричной РНК. Однако все это вместе – одна клетка, окруженная клеточной мембраной.

Вы знаете, что нервные клетки общаются друг с другом при помощи особых отростков, являющихся частью клетки. При этом многие отростки, по которым сигнал собирается (дендриты ), короткие, а один отросток, по которому передается (аксон ), длинный. Нервная система моллюсков устроена таким образом, что сигналы от мозга передаются клеткам тела фактически без посредников. Соответственно длина аксонов гигантских кальмаров достигает пары десятков метров.

Кроме яиц вы постоянно сталкиваетесь с клетками, которые можно увидеть невооруженным глазом – в переспевшей мякоти яблока или арбуза. Там клетки немногим меньше миллиметра, но они в основном заполненыогромными пузырьками с соком.

Клетки, в которых практически нет «ничего лишнего», т. е. которые представляют собой фабрики, но не склады – невелики. Особенно это касается клеток, которые активно делятся, прежде всего, клеток зародышей животных или растущих верхушек растений.

Главные свойства всех клеток одинаковы. Основные различия существуют между двумя типами организмов (мы уже знакомы с ними – это прокариоты и эукариоты), различия же между клетками одноклеточных и многоклеточных эукариот незначительны.

Рассмотрим важнейшие компоненты клетки.

1. Клеточная мембрана

Рассмотрим сначала, что есть общего у всех без исключения клеток. Пожалуй, главный атрибут клетки, который делает ее таковой, это внешняя клеточная мембрана , или плазмалемма . Она отграничивает клетку от внешней среды, часто наряду с клеточной стенкой. Однако клеточная стенка есть только у прокариот, растений и грибов, тогда как у животных ее нет. А мембрана присутствует всегда. Толщина клеточной мембраны – 5–7 нм. Как сказано ранее, микрометр – это одна тысячная миллиметра, а нанометр – одна тысячная микрометра. Вот о таких тонких материях мы с вами сейчас и рассуждаем.

Мембрана – это оболочка с весьма примечательными свойствами. Она не имеет постоянной формы, а ограничиваемое ею пространство – постоянного объема, и, вообще-то говоря, она жидкая, хотя и вязкая. Внутренний объем клетки она ограничивает силами поверхностного натяжения, которые существуют благодаря тому, что «жидкость» мембраны образована другой фазой – гидрофобной, не смешивающейся с водными растворами. Устройство мембраны замечательно. Ее основу составляют уже знакомые нам фосфолипиды – вещества с длинным двойным неполярным и, следовательно, гидрофобным хвостом и полярной головкой (рис. 7.1).

Фосфолипиды выстраиваются в два слоя – хвостами внутрь, головами наружу. Это называется липидный бислой. Их хвосты образуют ту самую несмешивающуюся с водой фазу – гидрофобную пленку, а головы ориентированы к водной среде снаружи и внутри клетки.

В водной среде фосфолипиды всегда располагаются в виде бислоя и образуют пузырьки. Это свойство обеспечивает замкнутость клеточной мембраны: если ее целостность нарушить, то она тут же восстанавливается.

Так же устроены молекулы детергентов – веществ, составляющих основу стирального порошка. Они потому и стирают, что связываются гидрофобной частью молекулы с гидрофобными, нерастворимыми в воде веществами грязи, а за счет гидрофильной части молекулы этот комплекс – грязь+ детергент – растворяются в воде.

Все видели бензиновую пленку на лужах. Это тоже гидрофобная фаза, которая не смешивается с водой и располагается на поверхности. Но она очень текучая и не имеет упругости, а мембрана – вязкая и достаточно упругая на растяжение. С химической точки зрения клеточная мембрана больше похожа на пленку, образующую пузыри стирального порошка. Но опять-таки она более вязкая и упругая и по этим свойствам больше похожа на воздушный шарик.

Кстати, в живой клетке непременно присутствует определенное избыточное давление. Это так называемое осмотическое давление . Природа его такова. Во внутриклеточной среде в растворе находится довольно много гидрофильных веществ – полярных органических веществ (например, сахара) и ионов (органические кислоты, аминокислоты и соли). Вода имеет сродство к ним за счет своего дипольного момента и водородных связей. Поэтому молекулы воды стремятся занять все свободные места возле молекул этих веществ – это выгодное энергетическое состояние. По этой причине каждая такая молекула гидратируется – окаймляется максимально большим количеством рыхло связанных с ней молекул воды. Как следствие вода притягивается к гидрофильным молекулам в клетке, накапливается внутри нее и создает там избыточное давление. В клетке поддерживается такая концентрация гидрофильных веществ, чтобы некоторое осмотическое давление имело место, но не такое сильное, чтобы оно могло разорвать клетку. Прочность мембраны и осмотическое давление, т. е. концентрация гидрофильных веществ во внутренней среде, подогнаны под оптимальное значение, и оно сказывается на объеме клетки, который может меняться в зависимости от осмотического давления.

Объемы нормальных функциональных клеток в нормальных для них условиях достаточно постоянны. Если поместить их в среду, где концентрация гидрофильных веществ вне клетки будет существенно меньше, чем внутри (такая среда называется гипотоничной ), то клетка начнет разбухать, пока не лопнет, вследствие того что фосфолипидов мембраны не хватит на всю ее поверхность. Если же концентрация гидрофильных веществ во внешней среде будет много выше, чем в клетке, т. е. среда будет гипертоничной , то клетка начнет терять воду и сдуется. Может быть, вам знакомо такое понятие – физраствор. Это раствор поваренной соли, в которой его ровно столько, чтобы живые клетки не набухали и не сдувались, а их внутреннее осмотическое давление всегда слегка превосходило осмотическое давление раствора.

Осмотическое давление создают любые гидрофильные вещества. Это могут быть соли, а могут быть незаряженные вещества, например тот же сахар. И это используется в повседневной практике консервации продуктов– именно из-за высокого осмотического давления бактерии не живут в варенье. Они там просто обезвоживаются.

Кстати, не вызвало ли вышесказанное такой вопрос: как вода проникает в клетку, если она окружена гидрофобной внутри мембраной? Детали этого процесса до конца не выяснены, но нужно принять во внимание, что двойной слой фосфолипидов – это не все, что есть в мембране, и гидрофобная пленка – не сплошная. Здесь не раз было сказано, что некие белки фиксированы на мембране. Так вот, мембрана вся насыщена белками и белковыми комплексами. В клеточной мембране белки могут уступать по массе фосфолипидам, а могут и превосходить. Как вы помните, у белков весьма велик диапазон варьирования гидрофильность / гидрофобность за счет варьирования аминокислотного состава гидрофильности. Белки, локализованные на мембране, заякориваются в гидрофобном слое фосфолипидных хвостов, а их гидрофильные, как правило, реакционноспособные части торчат внутрь и наружу клетки. При этом белок, погруженный в мембрану, за счет гидрофобного взаимодействия с фосфолипидами имеет совсем другую конформацию, чем тот же белок в водной среде. Вообще, расположение белков на мембране дало повод назвать описывающую ее модель плодоовощной - они там сидят, как огородные растения, имеющие корнеплоды, с глобулярной гидрофобной частью, погруженной в мембраны, и с гидрофильными частями в виде ботвы (рис. 7.3).

Участки некоторых белков пронизывают мембрану насквозь. Это так называемые трансмембранные белки .

Иногда это целые белковые комплексы – поры. Вода и растворенные в ней простые вещества могут проникать через мембрану сквозь систему гидрофильных белков и пор – путем диффузии. Направление диффузии таково, что вещества идут из области с большей их концентрацией в область с меньшей. Это называется – по градиенту концентрации, или по химическому градиенту. Если вещества заряжены, то имеет значение и электрическое поле. Разные стороны клеточной мембраны могут иметь разный заряд, и это влияет на диффузию заряженных веществ – они идут по электрохимическому градиенту.

Некоторые липиды могут проникать в клетку путем диффузии непосредственно сквозь фосфолипидный слой. Все упомянутые способы перемещения веществ через мембрану объединяются термином пассивный транспорт .

Но большая часть сложных веществ, включая, между прочим, и жирные кислоты с углеводородными цепочками свыше 10 атомов углерода, обмениваются через клеточную мембрану посредством специальных транспортных белков. Часть таких переносов проходит самопроизвольно, а часть требует затраты энергии, т. е. гидролиза молекулы АТФ. Первый случай называется облегченным транспортом через мембрану, а второй – активным транспортом . Если скорость диффузии зависит только от разности концентрации самого вещества, то скорость облегченного и активного транспорта – также и от концентрации транспортного белка в мембране, а скорость активного транспорта – еще и от концентрации АТФ. Разные типы трансмембранного транспорта представлены на схеме:

Кроме того, бывают случаи так называемого котранспорта – когда транспорт одного вещества через мембрану непременно связан с транспортом другого вещества, в том же самом или в противоположном направлении. Во втором случае транспортный белок фактически обменивает одно вещество на другое по разные стороны мембраны.

Однако активным транспортом переносятся не только - крупные и сложные органические молекулы. До 30 % всей энергии клетки затрачивается на поддержание разности концентраций внутри и снаружи неорганических ионов. Наиболее известный случай, и при этом пример котранспорта - это так называемый натрий-калиевый насос. Концентрация калия в наших клетках составляет около 100-150 ммоль, а в крови и плазме - в 30 раз меньше, всего около 5 ммоль. Концентрация натрия, наоборот, составляет 10-20 ммоль внутри и в 15 раз больше - около 145 мм - вовне. Как достаточно простые молекулы, ионы калия и натрия проникают за счет диффузии по градиенту своей концентрации наружу и внутрь соответственно. Причем ионы калия делают это в десятки раз быстрее: атом калия больше по диаметру, но за счет этого его ион меньше притягивает воду, поэтому он менее гидратирован, т. е. окружен меньшим количеством прилипших к нему молекул воды) - как следствие, эффективный диаметр иона калия в воде меньше, чем иона натрия. Натрий-калиевый насос катализирует гидролиз АТФ, при этом он фосфорилируется сам и одновременно открывается вовне клеточной мембраны, выталкивает связанный с ним ион натрия. Там он может связаться с ионом калия, что катализирует дефосфорилирование насоса и открывание его внутрь клеточной мембраны, с высвобождением иона калия внутрь. Таким образом, натрий-калиевый насос обменивает ионы натрия на ионы калия, делая это против градиента концентрации, тем самым поддерживая это далекое от равновесия со средой состояние клетки.

Оно не является самоцелью – разница в концентрациях этих ионов используется в самых различных процессах. Вот, к примеру, как организован транспорт глюкозы в клетку. Имеется белок – насос, перекачивающий глюкозу. Это некий трансмембранный белок,имеющий центр, связывающий молекулу глюкозы. Кроме того, белок имеет два состояния: «пинг» – когда он открыт внутрь клетки, и «понг» – когда он открыт наружу. Причем белок переключается между этими состояниями случайным образом и безо всякой затраты энергии. Однако центр связывания устроен таким образом, что сила связывания молекулы глюкозы напрямую зависит от присутствия ионов натрия в среде. Соответственно молекула глюкозы прочно связывается с белком при большой концентрации ионов натрия, и непрочно – при маленькой. В состоянии «понг» белок открыт наружу клетки, где концентрация натрия гораздо выше, чем внутри. Поэтому в этом состоянии он преимущественно связывается с глюкозой. Если после этого он перейдет в состоянии «пинг» и откроется внутрь клетки, где натрия мало, молекула глюкозы тут же отсоединится от него.

Таким образом, данный трансмембранный белок осуществляет транспорт глюкозы с той стороны мембраны, где концентрация ионов натрия велика, на ту сторону, где она низка, хотя у самого его нет никакого предпочтительного направления именно переноса глюкозы. И более того, работа этого насоса идет без всякой затраты энергии. Однако сам транспорт глюкозы идет с затратой энергии, а именно энергия тратится на создание самой разницы в концентрациях ионов натрия посредством натрий-калиевого насоса. Такое явление называется вторичный активный транспорт .

Разница в концентрации ионов натрия и калия используется также при передаче возбуждения по нервным клеткам. А разница в концентрации ионов кальция важна для мышечного сокращения.

Мы уже сталкивались с одним, пожалуй, наиболее важным специализированным трансмембранным транспортным комплексом – АТФ-синтетазой. Она не просто осуществляет пассивный транспорт протонов по градиенту концентрации, но и умудряется за счет этого синтезировать АТФ.

Кроме транспортной функции, мембранные белки могут осуществлять передачу сигнала извне клетки внутрь нее. Этим занимаются рецепторы – гормонов, медиаторов или физических воздействий. Рецепторы гормонов и медиаторов взаимодействуют со своими субстратами, в результате чего меняют конформацию, связываются с другими белками и вместе с ними погружаются внутрь клетки, передавая сигнал в ядро.

Необходимо отметить, что молекулы фосфолипидов и белков могут беспрепятственно перемещаться вдоль мембраны – это называется текучесть мембраны. Но они почти не перемещаются поперек, т. е. не переходят из внутреннего слоя во внешний и наоборот. И фосфолипидный состав слоев часто довольно существенно отличается. В частности, на внутреннем слое мембраны обычно преобладают фосфолипиды с отрицательно заряженными головками.

Аналогично, а частично и в силу этого мембранные белки не меняют свою ориентацию – внутрь или наружу – относительно клеточной мембраны.

Далее, текучесть мембраны зависит от температуры – как вы догадываетесь, связь этих параметров прямая. Фосфолипиды с предельными жирными кислотами дают более вязкую мембрану, чем с непредельными. Так что у клетки есть возможность влиять на текучесть своих мембран (а значит, и на крепость своей внешней границы) путем синтеза тех или иных фосфолипидов.

Многие белки мембраны несут на своих частях, обращенных вовне, нерегулярные олигосахариды строго определенной структуры – такие белки называют гликопротеидами . Это своего рода опознавательные знаки клетки. Через них осуществляется ее специфическое узнавание другими клетками или специальными белками. Иногда специфические олигосахариды присоединены к липидам – это гликолипиды . Например, группа крови определяется присутствием либо отсутствием одного из двух или обоих олигосахаридов определенной структуры на внешней стороне мембраны эритроцитов.

2. Клеточная стенка

Как вы понимаете, плазмалемма – очень непростая оболочка. Она может менять форму и площадь поверхности. Благодаря разнообразным белкам она может пропускать или не пропускать самые разные наборы вещества. Но это полужидкая и неизбежно очень нежная оболочка, которая вряд ли может предотвращать клетку от серьезных механических повреждений. Поэтому у многих организмов клетка окружена еще и клеточной стенкой . Это жесткое мало- или совсем нерастяжимое образование, внешнее по отношению к клетке. Как правило, она в той или иной степени сохраняет форму, упруга и прочна, в ряде случаев – очень прочна и обладает изрядной толщиной. Она состоит из веществ, вырабатываемых внутри клетки, выделяемых ею наружу и там затвердевающих. Чаще всего основу клеточной стенки составляют полисахариды. Но иногда большая часть стенки представлена другими твердыми органическими веществами.

Именно клеточные стенки наблюдали создатели первых микроскопов, и именно им, клеточным стенкам древесины, мы обязаны самим словом «клетка», так как сначала ученые увидели только стенки и лишь много позже получили представление о содержимом.

Можно было бы сказать, что клеточная стенка – явление универсальное, если бы не одно важнейшее исключение. Клеточной стенки нет у животных. Ни у одного животного и ни у одной клетки! И у нас с вами, естественно, тоже. Индивидуальные клетки животных могут нести на внешней поверхности определенные структурные белки, которые никогда не образуют плотной стенки. У многоклеточных животных могут быть сколь угодно прочные и толстые внешние покровы всего организма и отдельных органов, но их нет у индивидуальных клеток. Нет клеточной стенки и у одноклеточных животных – простейших. Именно поэтому возможны такие существа, как амебы, которые меняют форму своего тела, перетекая в выпячивания своего тела произвольной формы. Многие простейшие окружены известковой (в том числе и некоторые амебы) или кремниевой раковиной, часто очень сложного строения, но никогда плотной органической оболочкой.

Кроме животных на свете, как вы знаете, существуют растения, грибы и бактерии. Хороший вопрос: где граница между животными и растениями? Вы, наверное, слышали, что есть такая эвглена зеленая – то ли животное, то ли растение, которая плавает при помощи жгутика, зеленая и фотосинтезирующая на свету и бесцветная (только что не пушистая) и питающаяся бактериями и тому подобным в темноте. Ее часто выдают за «промежуточное звено между растениями и животными». У нее клеточной стенки нет. Похоже, на самом деле эвглена – это животный жгутиконосец, который носит в себе бывшую водоросль в виде хлоропласта с тройной мембраной. Обычно хлоропласты имеют двойную мембрану, еще одна мембрана, возможно, указывает на происхождение того, что под ней, от другого одноклеточного организма – водоросли, имевшей единственный хлоропласт. (А откуда взялись нормальные хлоропласты – мы еще рассмотрим.)

Другие одноклеточные зеленые жгутиконосцы (а их не так и много) клеточную стенку имеют и в этом смысле являются растениями. Наверняка они не очень-то и родственны «животным» жгутиконосцам, потому что плавание при помощи жгутика – вещь достаточно универсальная, и свободноживущие фотосинтезирующие жгутиконосцы могли возникнуть даже за счет упрощения каких-то многоклеточных форм, к примеру из их половых клеток, которые «начали самостоятельную жизнь».

Итак, животные отличаются от всех прочих живых существ тем, что утратили клеточную стенку. Это сделало их уязвимыми, но дало гибкость и подвижность, что немаловажно для их по сути хищнического существования – за счет поедания других организмов.

Клеточная стенка бактерий и растений состоит в основном из полисахаридов. У растений основу клеточной стенки составляет целлюлоза, гемицеллюлоза и пектин . Последнее – аморфное, не очень плотное вещество. Клеточная стенка растений обычно организована как железобетонная конструкция: волокна целлюлозы выполняют роль стальной арматуры, а пектин – цемента. Все знают, что такое волокна целлюлозы и где мы с ними сталкиваемся? Вата, хлопчатобумажные и льняные ткани, бумага (в последнем случае мы фактически имеем дело с их обрывками).

В клетках древесины к полисахаридам добавляется лигнин – сложный полимер органических спиртов, который составляет значительную часть их чрезвычайно толстой клеточной стенки.

У бактерий осно вным компонентом клеточной стенки является гликопептид муреин – полимер, в состав которого входят сахара, несущие аминогруппы, и короткие пептиды по 4–5 аминокислотных остатков. Может быть, будет полезно знать, что по типу клеточной стенки бактерии делятся на грамположительные и грамотрицательные (это различия в окраске при технологии окрашивания по Граму). У грамположительных бактерий стенки толще, но внутренняя структура не выявляется: кроме муреина там есть другие полисахариды. У грамотрицательных стенки тоньше, но в них выявляются слои: внутренний состоит из муреина, затем идет слой неплотно упакованных молекул белка, а потом – из липополисахаридов. Снаружи многие бактерии окружены слизистой капсулой.

В клетках бактерий поддерживается очень высокое осмотическое давление, которому толстая клеточная стенка призвана противостоять. Именно клеточная стенка придает бактериям характерную форму, по которой прежде всего и идет их классификация: форму шариков имеют кокки, форму палочек – бациллы, форму запятых – вибрионы, форму плавных спиралей – спириллы, тонких частых спиралей – спирохеты, форму с многими нитчатыми отростками – актиномицеты.

Клеточная стенка грибов состоит в основном из хитина – это, как вы помните, также азотсодержащий полисахарид, очень прочный и инертный.

Поразительна клеточная стенка археобактерий, состоящая в основном из полимера на основе изопрена – непредельного пятиуглеродного углеводорода, являющегося основной для каучука, т. е. резины! (Еще конденсация изопрена используется при синтезе терпенов и стероидных гормонов.) Получается, что химически их клеточная стенка родственна пластмассам и полиэтиленам. Вспомним, что галобактерии из археобактерий не умеют усваивать сахара, а утилизируют только аминокислоты. Судя по всему, эта форма жизни не умеет как следует обращаться с углеводами.

Клеточная стенка одноклеточных диатомовых водорослей состоит из неорганического вещества – кремнезема, поэтому ее, возможно, следовало бы считать не клеточной стенкой, а раковиной. Но так как диатомовые водоросли, как фотосинтезирующие эукариоты с хлоропластами, все же приходится относить к растениям, то и их покровы принято считать клеточной стенкой.

Для жизни клетка должна химически взаимодействовать с окружающей средой, а клеточная стенка как раз призвана это взаимодействие прервать, так как в отличие от плазмалеммы она непроницаема для большинства веществ. Поэтому в определенных, удобных для данной клетки местах в клеточных стенках имеются поры. На следующей схеме показана крайняя степень развития клеточной стенки - в клетке скорлупы кокосового ореха - где видны, соответственно, наиболее впечатляющие поры.

Сквозь поры проходят цитоплазматические мостики, соединяющие растительные клетки друг с другом - плазмодесмы . Вот как выглядят плазмодесмы, связывающие две клетки листа кукурузы:

А вот во что они превращаются в толстых оболочках клеток питательной ткани семени хурмы:

Некоторые (допустим, мужские половые) клетки растений не имеют клеточной стенки. Другие (почти все) их клетки можно лишить клеточной стенки искусственно (такая клетка называется «протопласт»), и это вполне совместимо с жизнью. Такая клетка строит себе новую клеточную стенку. А ее «голое» состояние бывает необходимо в технологиях, связанных с культурой клеток.

Собственно, на этом клеточные структуры, общие прокариотам и эукариотам заканчиваются, и дальше мы будем в основном иметь дело со структурами эукариотических клеток.Ну и начнем с главного, что делает их эукариотами (в переводе с греческого – «истинноядерными»), – с ядра.

3. Ядро

Внутреннее содержимое клетки выглядит бесструктурным, и чтобы визуализовать различные структуры перед тем, как рассматривать под микроскопом клетки, их обычно окрашивают теми или иными красителями. Применение большинства их них (даже неспецифических) к клеткам эукариот выявляет прежде всего ядро как крупную структуру, находящуюся чаще всего близко к середине клетки и более или менее сферической формы (но здесь бывают поразительные исключения). Преобладание сферической формы понятно – если мы внутри жидкости изолируем каплю другой жидкости жидкой же мембраной, то она примет сферическую форму. Это своего рода форма по умолчанию, которая может видоизменяться в случае особой внутриклеточной структуры.

Вот здесь показана схема эукариотической (животной и растительной) клетки, с типичным ядром

И вот здесь еще - растительной. Здесь вы видете ядро, смещенное к одной из стенок и немного вытянутое:

Эукариотические клетки без ядра представляют собой такое же исключение, как всадник без головы. Это значит, что дни такой клетки сочтены и она скоро выполнит свою функцию и погибнет. Самый яркий и едва ли не единственный пример – красные кровяные клетки (эритроциты) млекопитающих. Что характерно, у наших ближайших родственников – рептилий и птиц – ядра в эритроцитах есть. Такая обязательность ядра связана с тем, что ядро действительно является головой клетки – местом, где хранится и обрабатывается информация. Хранится там информация генетическая, а обрабатывается внешняя, пришедшая в виде тех или иных химических сигналов.

Что находится в ядре? Понятно, что там должна находиться ДНК, но есть еще и хороший ответ на все случаи жизни – белки. Белков там хватает самых разных – вспомним хотя бы ДНК- и РНК-полимеразы, белки – генные активаторы и репрессоры. Однако больше всего там структурных белков, которые связываются с ДНК и обеспечивают ее правильную упаковку. Комплекс ДНК и белков в ядре принято называть хроматином . (Название «хроматин» вводилось для обозначения вещества хромосом, а слово «хромосома» переводится как «цветное тело» – такое название они получили за счет интенсивного прокрашивания цитологическими красителями).

Кстати, такой вопрос: какое вещество в клетке имеет наибольшую молярную концентрацию? Вода конечно же! Немногим меньшую, чем в чистой воде. Молярная концентрация имеется не только у растворенных в воде веществ, но и у самой воды. Молярная концентрация воды в воде составляет- 18,5 моль / л. А какое вещество имеет наименьшую молярную концентрацию? ДНК! Сколько молекул ДНК содержится в ядре клеток человека? 46 или 92! Ровно столько, сколько у человека хромосом, или вдвое больше (угадайте почему). Каждая хромосома - это одна молекула ДНК. И в этих-то 46 молекулах, в каждой клетке, дважды записана информация о всех белках (а их сотни тысяч) и РНК (короткие некодирующие РНК пока никто не сосчитал) всего человеческого организма.

Суммарная длина молекул ДНК человека достигает в длину около 2 м. О хромосомах мы поговорим несколько позже, а сейчас просто осознаем тот факт, что 2 м ДНК нам нужно упаковать в ядро диаметром 5–10 мкм (т. е. в 500 тыс. раз меньше). Причем упаковать так, чтобы она имела возможность осмысленно работать – синтезировать нужные белки в нужном месте, в нужное время и в нужном количестве! И заметим, что гены почти равномерно раскиданы по всей ДНК, в том числе и нужные в любой конкретный момент. Это достигается несколькими уровнями упаковки нити ДНК, для которой у меня нет подходящей аналогии из нашей обыденной жизни. Магнитная лента не подойдет, так как, чтобы прочитать с нее какое-то место, до него нужно последовательно домотать. Натянутая, но более верная аналогия будет тут с книгой. Суммарная площадь книжных страниц в сотни раз больше площади поверхности закрытой книги. При этом книгу можно раскрыть в любом нужном месте и прочитать все, что нужно. А сделав закладки, – даже в нескольких местах сразу. Но это один уровень упаковки. Вообразим теперь книгу, все страницы в которой представляют собой раскладные вклейки. Мы получим два уровня компактной упаковки информации. Что-то такое имеет место и с ДНК, только информация там записана не на плоскости, а на линии, и уровней упаковки больше.

Более того, нужно вспомнить, что ДНК - какая-никакая, а все же кислота. Если мы вознамеримся плотно упаковать полианион, нам придется действовать против электростатического отталкивания и мы вряд ли преуспеем. Следовательно, чтобы упаковать ДНК, необходимо также нейтрализовать ее отрицательный заряд каким-то положительным зарядом.

Такая многоуровневая упаковка ДНК достигается за счет белков. Два самых нижних уровня упаковки обеспечиваются белками, имеющими в хроматине наибольшее количественное содержание и называемыми гистоны. Молекулы гистонов в целом положительно заряжены, за счет этого они и связываются с отрицательно заряженной ДНК. C уществует пять типов гистонов – четыре аргинин-богатых и один лизин-богатый. Молекулы первых четырех (они обозначаются Н2 a , H 2 b , H 3 и H 4) формируют единый белковый комплекс диаметром около 10 нм – коровую частицу, на которую наматывается (2,5 оборота) кусок ДНК. Коровая частица с намотанной на нее ДНК называется нуклеосомой . Нуклеосомы располагаются на частично свернутой ими молекуле ДНК как бусинки.

Нуклеосомы располагаются на частично свернутой ДНК как бусинки.

Кстати, конкретное расположение нуклеосом на ДНК связано с тем, должна или не должна на этом участке идти транскрипция. Когда хроматин становится транскрипционно-активным , расположение нуклеосом на нити ДНК меняется. Более того, существует явление, образно называемое гистоновым кодом. Коровые гистоны подвержены различным вторичным модификациям - к ним присоединяются метильные группы, остатки фосфорной кислоты, ацетильные группы, небольшой белок убиквитин. Это присоединение возможно лишь в строго определенных позициях гистонов (как правило, указанных группы присоединяются к положительно заряженным остаткам лизина или аргинина). Состав модифицированных гистонов в хроматине определяет его транскрипционную активность - по сути она сводится к плотности упаковки и доступности для РНК-полимераз. Так, модификации с присоединенными остатками кислот уменьшают общий заряд молекулы и как правило способствует разрыхлению хроматина. За счет так называемого кооперативного эффекта - а данном случае речь идет о том, что посадка молекул определенного типа на ДНК облегчает посадку таких же молекул во время ее репликации - определенное состояние отдельных участков хроматина может наследоваться в ряду клеточных поколений. Этим во многом объясняется тот факт, что клетки определенного типа как правило дают при делении клетки того же типа, то есть в дочерней клетке работают обычно те же гены, что работали в материнской, притом что каждая клетка имеет всю ДНК, характерную для данного вида.

С участком ДНК между нуклеосомами связывается пятый, лизин-богатый гистон Н1. В результате нить бусинок сворачивается в фибриллу диаметром 30 нм.

Цепочку нуклеосом и фибриллу диаметром 30 нм можно увидеть даже под электронным микроскопом:

В свою очередь, фибрилла диаметром 30 нм еще несколько раз сворачивается в упаковку более высокого порядка при помощи других, негистоновых белков хроматина , которые пока хуже изучены и не так широко известны. На следующем сделана попытка показать уровни упаковки ДНК в хроматин.

Ядро окружено не одной мембраной, а двумя. Сложные белковые механизмы – ядерные поры – пронизывают обе ядерные мембраны, которые в области пор замыкаются друг на друга. Становится ясно, что обе ядерные мембраны, по сути, представляют одну и ту же мембрану. Вероятно, она происходит от замкнувшегося на себя впячивания внешней клеточной мембраны вокруг области, занятой ДНК. На такие мысли наталкивает строение этой области у бактерий.

Вот здесь показана схема ядра:

Действительно, интересно посмотреть, чем обходятся вместо ядра прокариоты. У них тоже есть ДНК и с ней тоже связаны белки, но это не гистоны, да и количество их в расчете на ДНК существенно меньше, чем у эукариот. Молекула ДНК прокариот многократно короче (так как, в отличие от эукариот, в ней нет ничего лишнего) и не требует такой сильной упаковки. (Тем не менее, ДНК покоящихся бактерий часто упакована, опять-таки при помощи белков, практически до кристаллического состояния.) У большинства бактерий большинство генов заключается в одной молекуле ДНК, которая замкнута в кольцо. Она по аналогии с эукариотами обычно тоже называется хромосомой, хотя ее нельзя увидеть под световым микроскопом так, как бывает видно эукариотические хромосомы. Кроме того, в бактериальной клетке обычно имеется произвольное количество небольших кольцевых ДНК, называемые плазмиды . Бактерии легко обмениваются плазмидами, которые часто кодируют отдельные ситуационно-полезные признаки, например устойчивость к какому-то антибиотику. Несколько лет назад в журнале Nature был опубликован полный геном спирохеты, которая вызывает бореллиоз, или болезнь Лайма. (Эта болезнь, передающаяся клещами и распространенная у нас не менее энцефалита, но не такая знаменитая.) У этой спирохеты ДНК представлена фрагментами самого разного размера, частично кольцевыми, частично линейными, причем размерной границы между «хромосомами» и плазмидами не существует.

ДНК в клетке бактерий не распределена по всему объему, а собрана в довольно большой центральной области клетки. Под микроскопом эта область выглядит как имеющая другую плотность. Она получила название нуклеоид , т. е. .

Рядом с нуклеотидом есть так называемая мезосома – образование из множества плотно упакованных мембран, которые считаются впячиванием внешней мембраны.

Известно, что бактериальная «хромосома» прикреплена к внешней клеточной мембране и рост последней обеспечивает расхождение двух «хромосом» после их репликации, так что при образовании перетяжки и делении бактерии на две в каждую попадает одна копия. Считается, что мезосома имеет ко всему этому непосредствнное отношение – именно здесь хромосома присоединяется к мембране и именно мезосома участвует в ее росте. Мезосомы играют роль в репликации хромосомы и ее последующем расхождении по дочерним клеткам, участвуют в процессе инициации и формирования поперечной перегородки при делении. Не исключено, что после удвоения ДНК участок клеточной мембраны, который должен вырасти между ними, формируетсяименно в мезосоме. Имеются данные, что мезосомы же играют роль в клеточном дыхании (мы помним, что для этого нужны мембранные компартменты).

У эукариот хромосомы тоже присоединяются концами к определенным местам ядерной оболочки. Получается, что мезосома прокариот в каких-то функциях сходна с ядерной оболочкой эукариот. Только представляет собой мембрану, не одевающую нуклеоид, а сложенную рядом, как надетая и снятая одежда.

Вернемся к эукариотам, а именно к ядерным порам. Они нам были нужны как места, где мембрана замыкается на себя, теперь взглянем на них как на сложные шлюзы для транспорта веществ в ядро и обратно. Все, что находится внутри наружной клеточной плазматической мембраны, но не является ядром, называется цитоплазмой . Одно из главных функциональных отличий ядра и цитоплазмы состоит в том, что синтез РНК идет только в ядре, а синтез белков – в цитоплазме (хотя в последнее время появились данные, что до 15% синтеза белка идет в ядре). А как вы, надеюсь, помните, для синтеза РНК нужны определенные ферменты, которые тоже белки. Кроме того, в ядре нужны такие белки, как гистоны, и другие белки, упаковывающие ДНК в хроматин, ферменты, участвующие в репликации ДНК, а также множество специфичных генных регуляторов – активаторов и репрессоров – также белковой природы. Это означает, что ядерные поры должны пропускать наружу мРНК в комплексе со специальными белками, а внутрь – белки, необходимые в ядре.

Еще важная статья ядерного экспорта – субъединицы рибосом. Они, как вы помните, состоят из рРНК и нескольких десятков белков. Это продукты из разных стран происхождения. Цех по сборке почему-то находится именно в ядре и называется ядрышко . Субъединицы рибосом транспортируются обратно в цитоплазму.

Вот схема транспорта через ядерную оболочку:

Таким образом, ядерные поры аналогичны не дыркам в заборе, через которые что-то может быть утащено, нет, это сложно устроенные таможни, где компетентные белковые структуры обслуживают строго регламентированный трансграничный транспорт. Для того чтобы быть импортированным в ядро, белок должен нести особую акцизную марку – пептид ядерного транспорта. Это короткий пептид, состоящий из нескольких аминокислотных остатков. Он навешивается на готовые белки, которые должны быть перенесены в ядро после их синтеза, причем неважно, на какое именно место его навесили. Когда такой белок случайно оказывается рядом с ядерной порой, она опознает его по пептиду ядерного транспорта и затаскивает внутрь.

При транспорте мРНК через ядерную пору связанные с ней ядерные белки заменяются на цитоплазматические, т. е. мРНК следует как транзитный багаж, передаваясь из рук в руки разными компаниями грузчиков. (Можно также представить это как переодевание РНК в национальную одежду при пересечении границы.)

Ядерные поры на поверхности ядра под сканирующим электронным микроскопом выглядят так:

Ядерные поры достаточно велики, и отдельные их белковые элементы могут быть видны в электронном микроскопе. В Институте цитологии и генетики новосибирского Академгородка этими исследованиями с успехом и во взаимодействии с англичанами занимается группа под руководством Е. В. Киселевой. На следующем рисунке приведена схема ядерной поры, взятая из работы этой группы.

схема строения ядерной поры, с электронной микрофотографией всех ее элементов:

и электронные микрофотографии ядерной поры в процессе сборки при восстановлении ядерной мембраны после деления клетки:

Клеточная стенка (клеточная оболочка) – характерный признак растительной клетки, отличающий ее от клетки животной. Клеточная стенка придает клетке определенную форму. Культивируемые на специальных питательных средах клетки растений, у которых ферментативным путем удаляется стенка, всегда принимают сферическую форму. Клеточная стенка придает клетке прочность и защищает протопласт, она уравновешивает тургорное давление и препятствует, таким образом, разрыву плазмалеммы. Совокупность клеточных стенок образует внутренний скелет, поддерживающий тело растения и придающий ему механическую прочность.

Клеточная стенка бесцветна и прозрачна, легко пропускает солнечный свет. Обычно стенки пропитаны водой. По системе клеточных стенок осуществляется транспорт воды и растворенных в ней низкомолекулярных соединений (транспорт по апопласту).

Клеточная стенка состоит в основном из полисахаридов, которые можно подразделить на скелетные вещества и вещества матрикса.

Скелетным веществом клеточной стенки растений является целлюлоза (клетчатка) , представляющая собой бета-1,4-D-глюкан. Это самое распространенное органическое вещество биосферы. Молекулы целлюлозы представляют собой очень длинные неразветвленные цепи, они располагаются параллельно друг другу группами по нескольку десятков и скреплены многочисленными водородными связями. В результате образуются микрофибриллы , которые создают структурный каркас стенки и обусловливают ее прочность. Микрофибриллы целлюлозы видны только в электронный микроскоп, их диаметр равен 10-30 нм, длина достигает нескольких мкм.

Целлюлоза нерастворима и не набухает в воде. Она очень инертна в химическом отношении, не растворяется в органических растворителях, концентрированных щелочах и разведенных кислотах. Микрофибриллы целлюлозы эластичны и очень прочны на разрыв (сходны со сталью). Эти свойства определяют широкое применение целлюлозы и ее продуктов. Мировая продукция хлопкового волокна, состоящего почти целиком из целлюлозы, составляет 1,5 10 7 тонн в год. Из целлюлозы получают бездымный порох, ацетатный шелк и вискозу, целлофан, бумагу. Качественную реакцию на целлюлозу проводят с реактивом хлор-цинк-йод , целлюлозная клеточная стенка окрашивается в сине-фиолетовый цвет.

У грибов скелетным веществом клеточной стенки является хитин – полисахарид, построенный из остатков глюкозамина. Хитин еще более прочен, чем целлюлоза.

Микрофибриллы погружены в аморфный матрикс , обычно представляющий собой насыщенный водой пластичный гель. Матрикс является сложной смесью полисахаридов, молекулы которых состоят из остатков нескольких различных сахаров и представляют собой более короткие, чем у целлюлозы, и разветвленные цепи. Матричные полисахариды определяют такие свойства клеточной стенки, как сильная набухаемость, высокая проницаемость для воды и растворенных в ней низкомолекулярных соединений, катионообменные свойства. Полисахариды матрикса делят на две группы – пектиновые вещества и гемицеллюлозы .

Пектиновые вещества сильно набухают или растворяются в воде. Они легко разрушаются под действием щелочей и кислот. Простейшими представителями пектиновых веществ являются растворимые в воде пектовые кислоты – продукты полимеризации альфа-D-галактуроновой кислоты (до 100 единиц), связанных 1,4-связями в линейные цепи (альфа-1,4-D-галактуронан). Пектиновые кислоты (пектины) – это более высокомолекулярные (100-200 единиц) полимерные соединения альфа-D-галактуроновой кислоты, в которых карбоксильные группы частично метилированы. Пектаты и пектинаты – кальциевые и магниевые соли пектовых и пектиновых кислот. Пектиновые кислоты, пектаты и пектинаты растворимы в воде в присутствии сахаров и органических кислот с образованием плотных гелей.

В клеточных стенках растений в основном присутствуют протопектины – высокомолекулярные полимеры метоксилированной полигалактуроновой кислоты с арабинанами и галактанами, у двудольных растений в состав цепей галактуронана входит небольшое количество рамнозы. Протопектины нерастворимы в воде.

Гемицеллюлозы представляют собой разветвленные цепи, построенные из остатков нейтральных сахаров, чаще встречаются глюкоза, галактоза, манноза, ксилоза; степень полимеризации 50-300. Гемицеллюлозы химически более устойчивы, чем пектиновые вещества, они труднее гидролизуются и слабее набухают в воде. Гемицеллюлозы могут откладываться в стенках клеток семян в качестве запасных веществ (финиковая пальма, хурма). Пектиновые вещества и гемицеллюлозы связаны взаимными переходами. Помимо полисахаридов, в матриксе клеточных стенок присутствует особый структурный белок. Он связан с остатками сахара арабинозы и поэтому является гликопротеидом.

Матричные полисахариды не просто заполняют промежутки между целлюлозными микрофибриллами. Их цепи располагаются упорядоченно и образуют многочисленные связи как друг с другом, так и с микрофибриллами, что значительно повышает прочность клеточной стенки.

Клеточные стенки растений часто подвергаются химическим видоизменениям. Одревеснение , или лигнификация происходит в том случае, если в матриксе откладывается лигнин – полимерное соединение фенольной природы, нерастворимое в воде. Одревесневшая клеточная стенка теряет эластичность, резко повышается ее твердость и прочность на сжатие, снижается проницаемость для воды. Реактивами на лигнин являются: 1) флороглюцин и концентрированная хлористоводородная или серная кислота (одревесневшие стенки приобретают вишнево-красную окраску) и 2) сульфат анилина , под действием которого одревесневшие стенки становятся лимонно-желтыми. Лигнификация характерна для стенок клеток проводящей ткани ксилемы (древесины) и механической ткани склеренхимы.

Опробковение , или суберинизация происходит в результате отложения с внутренней стороны клеточной стенки гидрофобных полимеров – суберина и воска . Суберин представляет собой смесь эфиров полимерных жирных кислот. Мономерами воска являются жирные спирты и восковые эфиры. Воск легко извлекается органическими растворителями и быстро плавится, образует кристаллы. Суберин – аморфное соединение, не плавится и не растворяется в органических растворителях. Суберин и воск, образуя чередующиеся параллельные слои, выстилают всю полость клетки с внутренней стороны в виде пленки. Субериновая пленка практически непроницаема для воды и для газов, поэтому после ее образования клетка обычно отмирает. Опробковение характерно для стенок клеток покровной ткани пробки. Реактивом на опробковевшую клеточную стенку является судан III , окраска оранжево-красная.

Кутинизации подвергаются наружные стенки клеток покровной ткани эпидермы. Кутин и воск откладываются чередующимися слоями на наружной поверхности клеточной стенки в виде пленки – кутикулы . Кутин представляет собой жироподобное полимерное соединение, близкое по химической природе и свойствам суберину. Кутикула предохраняет растение от излишнего испарения воды с поверхности растения. Окрасить ее можно реактивом судан III в оранжево-красный цвет.

Минерализация клеточной стенки происходит вследствие отложения в матриксе большого количества минеральных веществ, чаще всего кремнезема (оксида кремния), реже оксалата и карбоната кальция. Минеральные вещества придают стенке твердость и хрупкость. Отложение кремнезема характерно для клеток эпидермы хвощей, осок и злаков. Приобретенная в результате окремнения жесткость стеблей и листьев служит защитным средством против улиток, а также значительно снижает поедаемость и кормовую ценность растений.

У некоторых специализированных клеток наблюдается ослизнение клеточной стенки. При этом вместо целлюлозной вторичной стенки происходит отложение аморфных, сильно гидратированных кислых полисахаридов в виде слизей и камедей , близких по химической природе к пектиновым веществам. Слизи хорошо растворяются в воде с образованием слизистых растворов. Камеди клейкие, вытягиваются в нити. В сухом виде они имеют роговую консистенцию. При отложении слизи протопласт постепенно оттесняется к центру клетки, его объем и объем вакуоли постепенно уменьшаются. В конце концов, полость клетки может целиком заполниться слизью, и клетка отмирает. В некоторых случаях слизь может проходить через первичную клеточную стенку на поверхность. В синтезе и секреции слизи основное участие принимает аппарат Гольджи.

Выделяемая растительными клетками слизь выполняет различные функции. Так, слизь корневого чехлика служит в качестве смазки, облегчающей рост кончика корня в почве. Слизевые железки насекомоядных растений (росянка) выделяют ловчую слизь, к которой приклеиваются насекомые. Слизь, выделяемая наружными клетками семенной кожуры (лен, айва, подорожники), закрепляет семя на поверхности почвы и защищает проросток от высыхания. Слизь окрашивается реактивом метиленовый синий в голубой цвет.

Выделение камедей обычно происходит при поранении растений. Например, камедетечение из пораненных участков стволов и ветвей часто наблюдается у вишни и сливы. Вишневый клей представляет собой застывшую камедь. Камедь выполняет защитную функцию, закрывая рану с поверхности. Образуются камеди в основном у древесных растений из семейств бобовых (акации, трагакантовые астрагалы) и розоцветных подсемейства сливовых (вишня, слива, абрикос). Камеди и слизи используются в медицине.

Клеточная стенка является продуктом жизнедеятельности протопласта. Полисахариды матрикса, гликопротеид стенки, лигнин и слизи образуются в аппарате Гольджи. Синтез целлюлозы, образование и ориентация микрофибрилл осуществляются плазмалеммой. Большая роль в ориентации микрофибрилл принадлежит микротрубочкам, которые располагаются параллельно откладывающимся микрофибриллам вблизи плазмалеммы. Если микротрубочки разрушить, образуются только изодиаметрические клетки.

Образование клеточной стенки начинается во время деления клетки. В плоскости деления образуется клеточная пластинка, единый слой, общий для двух дочерних клеток. Она состоит из пектиновых веществ, имеющих полужидкую консистенцию; целлюлоза отсутствует. Во взрослой клетке клеточная пластинка сохраняется, но претерпевает изменения, поэтому ее называют срединной , или межклеточной пластинкой (межклеточным веществом) (рис. 2.16 ). Срединная пластинка обычно очень тонка и почти неразличима.

Сразу после образования клеточной пластинки протопласты дочерних клеток начинают откладывать собственную клеточную стенку. Она откладывается изнутри как на поверхности клеточной пластинки, так и на поверхности других клеточных стенок, принадлежавших ранее материнской клетке. После деления клетка вступает в фазу роста растяжением, который обусловлен интенсивным осмотическим поглощением клеткой воды, связанным с образованием и ростом центральной вакуоли. Тургорное давление начинает растягивать стенку, но она не рвется благодаря тому, что в нее постоянно откладываются новые порции микрофибрилл и веществ матрикса. Отложение новых порций материала происходит равномерно по всей поверхности протопласта, поэтому толщина клеточной стенки не уменьшается.

Стенки делящихся и растущих клеток называют первичными . Они содержат много (60-90%) воды. В сухом веществе преобладают матричные полисахариды (60-70%), содержание целлюлозы не превышает 30%, лигнин отсутствует. Толщина первичной стенки очень невелика (0,1-0,5 мкм).

Для многих клеток отложение клеточной стенки прекращается одновременно с прекращением роста клетки. Такие клетки окружены тонкой первичной стенкой до конца жизни ( рис. 2.16).

Рис. 2.16. Паренхимная клетка с первичной стенкой.

У других клеток отложение стенки продолжается и по достижении клеткой окончательного размера. При этом толщина стенки увеличивается, а объем, занимаемый полостью клетки, сокращается. Такой процесс носит название вторичного утолщения стенки, а саму стенку называют вторичной (рис. 2.17 ).

Вторичная стенка может рассматриваться как дополнительная, выполняющая главным образом механическую, опорную функцию. Именно вторичная стенка ответственна за свойства древесины, текстильного волокна, бумаги. Вторичная стенка содержит значительно меньше воды, чем первичная; в ней преобладают микрофибриллы целлюлозы (40-50% от массы сухого вещества), которые располагаются параллельно друг другу. Из полисахаридов матрикса характерны гемицеллюлозы (20-30%), пектиновых веществ очень мало. Вторичные клеточные стенки, как правило, подвергаются одревеснению. В неодревесневших вторичных стенках (лубяные волокна льна, волоски хлопчатника) содержание целлюлозы может достигать 95%. Большое содержание и строго упорядоченная ориентация микрофибрилл определяют высокие механические свойства вторичных стенок. Часто клетки, имеющие вторичную одревесневшую клеточную стенку, после завершения вторичного утолщения отмирают.

Срединная пластинка склеивает соседние клетки. Если ее растворить, стенки клеток теряют связь друг с другом и разъединяются. Этот процесс называется мацерация . Довольно обычна естественная мацерация, при которой пектиновые вещества срединной пластинки переводятся в растворимое состояние с помощью фермента пектиназы и затем вымываются водой (перезрелые плоды груши, дыни, персика, банана). Часто наблюдается частичная мацерация, при которой срединная пластинка растворяется не по всей поверхности, а лишь в углах клеток. Вследствие тургорного давления соседние клетки в этих местах округляются, в результате чего образуются межклетники (рис. 2.16 ). Межклетники образуют единую разветвленную сеть, которая заполняется парами воды и газами. Таким образом, межклетники улучшают газообмен клеток.

Характерная особенность вторичной стенки – ее неравномерное отложение поверх первичной стенки, в результате чего во вторичной стенке остаются неутолщенные участки – поры . Если вторичная стенка не достигает большой толщины, поры выглядят как мелкие углубления. У клеток с мощной вторичной стенкой поры в разрезе имеют вид радиальных каналов, идущих от полости клетки до первичной стенки. По форме порового канала различают поры двух типов – простые и окаймленные (рис. 2.17 ).

Рис. 2.17. Типы пор : А – клетки с вторичными стенками и многочисленными простыми порами; Б – пара простых пор; В – пара окаймленных пор.

У простых пор диаметр порового канала по всей длине одинаковый и имеет форму узкого цилиндра. Простые поры характерны для паренхимных клеток, лубяных и древесинных волокон.

Поры в двух смежных клетках, как правило, возникают друг против друга. Эти общие поры имеют вид одного канала, разделенного тонкой перегородкой из срединной пластинки и первичной стенки. Такая совокупность двух пор смежных стенок соседних клеток носит название пары пор и функционирует как одно целое. Разделяющий их канал участок стенки называется замыкающей пленкой поры , или поровой мембраной . В живых клетках замыкающая пленка поры пронизана многочисленными плазмодесмами (рис. 2.18 ).

Плазмодесмы присущи только растительным клеткам. Они представляют собой тяжи цитоплазмы, пересекающие стенку смежных клеток. Число плазмодесм в одной клетке очень велико – от нескольких сотен до десятков тысяч, обычно плазмодесмы собраны в группы. Диаметр плазмодесменного канала составляет 30-60 нм. Его стенки выстланы плазмалеммой, непрерывной с плазмалеммой смежных клеток. В центре плазмодесмы проходит мембранный цилиндр – центральный стержень плазмодесмы , непрерывный с мембранами элементов эндоплазматической сети обеих клеток. Между центральным стержнем и плазмалеммой в канале находится гиалоплазма, непрерывная с гиалоплазмой смежных клеток.

Рис. 2.18. Плазмодесмы под электронным микроскопом (схема ): 1 – на продольном срезе; 2 – на поперечном срезе; Пл – плазмалемма; ЦС – центральный стержень плазмодесмы; ЭР – элемент эндоплазматического ретикулума.

Таким образом, протопласты клеток не полностью изолированы друг от друга, а сообщаются по каналам плазмодесм. По ним происходит межклеточный транспорт ионов и мелких молекул, а также передаются гормональные стимулы. Посредством плазмодесм протопласты клеток в растительном организме образуют единое целое, называемое симпластом , а транспорт веществ через плазмодесмы получил название симпластического в отличие от апопластического транспорта по клеточным стенкам и межклетникам.

У окаймленных пор (рис. 2.17 )канал резко суживается в процессе отложения клеточной стенки, поэтому внутреннее отверстие поры, выходящее в полость клетки, гораздо уже, чем наружное, упирающееся в первичную стенку. Окаймленные поры характерны для рано отмирающих клеток водопроводящих элементов древесины. У них поровый канал по направлению к замыкающей пленке воронковидно расширяется, а вторичная стенка нависает в виде валика над расширенной частью канала, образуя камеру поры. Название окаймленной поры происходит оттого, что при рассмотрении с поверхности внутреннее отверстие имеет вид маленького круга или узкой щели, тогда как наружное отверстие как бы окаймляет внутреннее в виде круга большего диаметра или более широкой щели.

Поры облегчают транспорт воды и растворенных веществ от клетки к клетке, в то же время не снижая прочности клеточной стенки.