Электричество | Заметки электрика. Совет специалиста

Основные методы изготовления паяльного фена в домашних условиях. Паяльная станция своими руками. Схема самодельной паяльной станции Простая паяльная станция своими руками самодельные

Паяльная станция построена на картриджах Hakko T12 . Имеет два паяльника по 70 Ватт, вытяжку дымоуловитель, блоки питания для внешних потребителей. Бюджет составил около 10-15$.

Начало эпопеи было несколько месяцев назад когда пришло купленное на пробу жало Hakko T12-KU. Собранный для пробы паяльник " " оказался вполне удобным, также сами картридж жала порадовали своей работой. Было заказано еще одно более массивное жало, и я решил сделать законченную паяльную станцию.

Функции паяльной станции:

    Два паяльника по 70вт управляемых по отдельным каналам. При выпайке деталей, часто удобней пользоваться двумя паяльниками одновременно. Да и при монтаже не надо терять время на смену жала. Плюс в моей конструкции паяльника замена жал не предусмотрена, для тех кто хочет иметь сменные жала в качестве одного из паяльников нужно поставить покупную ручку.

    Вытяжка с фильтром. Дышать флюсом и припоем особо не хочется и лишнего места на столе, как правило нет, а тут одним блоком заменил два.

    Блок питания 24в с отдельным выключателем, можно подключить дрель или других потребителей. Дополнительно также экономится место, поскольку не надо держать блок питания для дрели или постоянно перенастраивать лабораторный блок питания.

    Блок питания 5в, два разъема USB, для питания самих устройств. Я последнее время на все платы с питанием от 5в распаиваю в качестве питания мини USB разъемы или для совсем мелких плат кидаю шнурок с USB разъемом на конце.

Warning

Сначала несколько предупреждений.

Первое.

В случае отсутствия качественной земли крайне не рекомендую использовать для питания паяльников блок построенный на основе компьютерного блока питания. Т.е. не желательно их использовать в старых домах где не проведена централизованно шина заземления. Использовать в качестве заземления трубы центрального отопления также нельзя поскольку сейчас массово в квартирах заменяются трубы на пластиковые и нельзя быть уверенным в электрическом соединении батареи с землей.

Если вы предполагаете возможность использования паяльной станции при отсутствии качественного заземления, то следует блок питания строить на основе классического трансформатора. (Схемы регуляторов температуры не требуют стабилизированного источника питания, единственное желательно, что бы напряжение лежало в пределах от 19 до 24 в, иначе мощность паяльника значительно упадет. т.е. можно обойтись после трансформатора просто выпрямителем с конденсаторным фильтром)

Второе.

Я не заземлял жало. Предполагаю при пайке особо чувствительных элементов просто бросать провод с крокодилом на жало. Если вы часто паяете маломощные полевые транзисторы и другие элементы, особо чувствительные к пробою, то рекомендую заземление заложить сразу. Единственное по соображениям безопасности жало как и браслет следует заземлить через резистор более 100 кОм (рекомендуется через резистор 1МОм).

Третье.

Как говорится не все йогурты одинаково полезны.

Второе жало купленное за $2.76 имеет заметные недостатки.

Перечислю по возрастанию проблемы.

1. При работе регулятора от жала слышны звуки, щелчки при включении циклов нагрева. Скорее всего при заливке нагревателя остались пустоты, как это скажется на долговечности не понятно.

2. Термопара занижает показания. Если у вас такое жало будет использоваться вместе с нормальными придется проводить постоянно перекалибровку, смешение довольно большое около 100гр. А для аналоговой схемы регулировки перекалибровка представляет не тривиальную задачу.

3. Самый главный недостаток. При протекании тока похоже нагревается холодный спай термопары, что нарушает нормальную работу регулятора.

Привожу осциллограммы работы регулятора со старым жалом (стоило оно около 4$) и нового.

Со старым жалом регулятор нормально функционирует, цикл нагрева и длинная пауза пока набранная температура не упадет до пороговой.

Жало за 2.76$ кардинально отличается в поведении. Как я предполагаю происходит нагрев холодного спая током протекающим во время разогрева. И после цикла нагрева при измерении температуры происходит ошибка и схема снова уходит в нагрев, пока температура горячей части не превысит температуру на которую нагрелся холодный спай протекающим током. После пачки циклов нагрева порог все таки превышается и регулятор уходит в длинную паузу. Холодный спай быстро остывает (менее 100мс) и температура меряется близко к правильной. В итоге фактически удлиняется цикл нагрева и мы получаем колебания температуры жала, для относительно массивного жала на конце они оказались на уровне нескольких градусов, что не фатально влияет на работу. Как подобные жала будут работать с ПИД регуляторами затрудняюсь сказать, но думаю результаты будут более плачевные и добиться устойчивой работы регулятора не получится.

Основной блок

Паяльная станция построена на базе блока питания АТХ с 12см вентилятором. Взял для переделки вот такого махрового китайца. Заявленная мощность совершенно не соответствует начинке, реально блок ватт на 200. Но для наших целей вполне сойдет потребление в пике двух паяльников не превысит 140 Вт.

С верху разместил два регулятора температуры, отдельно для каждого паяльника. И три выключателя позволяющие раздельно включать каждый паяльник и внешнюю нагрузку 24в. Общее включение блока оставил на штатном выключателе блока АТХ. Кабель питания также подключается к штатному разъему. Дополнительно вывел разъемы питания 24в и колодку USB для подключения нагрузки 5в.

12см вентилятор помимо обдува блока, использую для вытяжки дыма. Для увеличения воздушного потока помимо вентилятора внутри корпуса установлен еще один вентилятор на наружной стороне. Желательно использовать вентиляторы мощностью более 4Вт. Мне попался вентилятор 12см 220В 8Вт который я использовал как внешний. Для питания вентилятора 12в используется линейный стабилизатор КРЕН8Б установленный через изолирующую прокладку на радиатор низковольтных диодов. Он понижает напряжение 24В до 12, одновременно он вместе с вентилятором служит нагрузкой блока питания на холостом ходу. При использовании 2 мощных вентиляторов 12В желательно использовать импульсный понижающий стабилизатор (стоимость готовой платы на ток около 2А на али около 1$). В крайнем случае, при использовании линейного стабилизатора установите его на отдельный радиатор. На внешний вентилятор спереди закреплена решетка от вентилятора блока питания, по верх которой размешен воздушный фильтр. Использовал кусок фильтра от кухонной вытяжки, он в составе волокна имеет отсорбент. Можно также поискать и чисто угольные фильтры, мне к сожалению пока не попался подходящих размеров.

Подробно останавливаться на переделке блока АТХ не буду поскольку доработка зависит от модели блока питания. Мой блок был построен на базе микросхемы 3845. Я убрал все все элементы не 12в каналов и все элементы штатных фильтров и конденсаторов вторичного питания. Распаял новый фильтр используя более высоковольтные конденсаторы. Мне повезло, что в максимуме блок выдавал 29в, и для получения 24в пришлось только подобрать сопротивление резисторов в цепи стабилизации, и заблокировать цепи защиты по напряжению.

На задней решётке видны клеммы 24 в и планка с USB взятая от старого корпуса. Отверстия проделывал просто выкусывая элементы решётки.

Конструкция паяльников

Конструкцию рассматривал и в предыдущей статье. Сейчас повторно и более подробно покажу этапы изготовления.

Подключения проводов на скрутке и термоусадках.

А также относительно прошлого раза несколько изменил склейку бумаги. Я в этот раз увеличение площади слоев сделал постепенной, что облегчило склейку.

Сверху обжал термоусадку.

Сзади для увеличения жесткости залил клеем.

Ручка паяльника получается легкая 26 гр. Расстояние от жала не большое всего 4.5 см.

Такую конструкцию можно использовать как минимум для второго паяльника, например сделав его на основе жала T12-K или T12-KF, которые удобны для выпаивания компонентов и микросхем.

Также в сети встречал такой вариант: человек припаивали провода к контактам, а ручку делал из дерева.

Схема регулятора температуры

В этот раз сделал схему на основе LM324. (схема на основе LM358 приведена в прошлый раз).

Китайский вариант схемы взятый за основу должен быть тоже работоспособным, единственное надо параллельно конденсатору С4 поставить защитный диод типа 1N4148, как в схеме на LM358, и полевой транзистор должен иметь разрешённое напряжение по затвору более 25 в.

Основное отличие этой схемы, от схемы на LM358, это то что напряжение с термопары сначала усиливается, а лишь затем подается на компаратор. Моя схема представляет компиляцию предыдущего устройства на LM358 и китайской схемы на LM324.

Плату рисовал в Sprint-Layout версии 5. Переменный резистор ВСП4-1 0.5вт, СМД резисторы и керамические конденсаторы типоразмера 0805, кроме R3 размера 2512 и R8 размера 1206, конденсатор С7 типо размера В. Разводка платы не идеально но мне нужно было что бы по размерам и посадке она совпадала с предыдущей платой. Диод D3 служит для зашиты от неправильного включения и в принципе он не нужен если плата не используется автономно, но я в процессе отладки умудрился включить плату неправильно по полярности в итоге через несколько секунд рванул конденсатор С5, а остальная плата осталась цела. Резистор R3 можно заменить просто перемычкой. Резисторы R1 и R2 вместе с подстроечным резистором определяют диапазон регулировки температуры, к сожалению разброс дрейфа нуля операционного усилителя не позволяет точно подобрать номиналы этих резисторов. У меня диапазон регулировки настроен от 200 до 400 градусов.

Плату делал на двух стороннем текстолите одна из сторон используется под землю. В контакты обозначенные на схеме как с металлизацией впаиваются перемычки остальные зенкуются. Но плату можно сделать и используя односторонний текстолит, тогда со всех точек обозначенных металлизацией бросаются перемычки проводами на точку расположенную рядом с отрицательным выводом электролита С5 (желательно внести изменения в плату добавив там дополнительных площадок). Я обрезаю плату до нужного размера после травления сверловки и лужения, поскольку на краях где резал ножницами фольга деформированна и плохо зачищается.

После распайки СМД деталей отмыл плату, а уже затем распаял переменный и подстроечный резистор, а также ДИП детали с проводами. Это позволяет при пайке СМД меньше ограничиваться в выборе флюсов.

Остальные детали и провода паяю используя спиртоканифоль или последнее время чаще безотмывочный флюс. (Из за проблем с жалом во время отладки и пока не понял причин немного замучил плату перепайками.)

В целом схема на LM324 немного лучше работает чем на LM358, хотя при пайке различия не особо заметны. Схема на LM358 при подходе к температуре стабилизации примерно на секунду частит светодиодом, т.е. подход происходит плавно с падением мощности отдаваемым в нагреватель вблизи температуры стабилизации. Схема на LM324 выходит на режим стабилизации более резко почти сразу переходя на медленное мигание светодиодом. Какую схему выбрать для реализации скорее должно определятся какие детали под рукой, как я говорил при пайке особой разницы я не заметил, хоть схема на LM324 и ведет себя лучше.

Планы

Или что хотел сделать и пока не реализовал, как говорится, в мире нет ничего более постоянного чем сделанное временно.

    Подумываю поставить разъемы для паяльников. Чтобы можно было сделать еще паяльников под другие жала и в случае необходимости менять подключенные паяльники. Сейчас на корпусе есть два мини джека, но я опасаюсь их использовать для тока в три ампера.

    Поставит предохранитель на внешние разъемы 24в и возможно также для USB выходов.

    Ну и надо искать, чем заменить старый фильтр вытяжки, а то он уже грязный, и воздух проходит с трудом.

    Также хорошо бы сделать какую то новую подставку под оба паяльника.

    На вентилятор необходимо установить небольшой козырек, что бы направлять потоки воздуха и улучшить всасывание дыма.

    Как продолжения идеи козырька подумываю туда же прикрепить увеличительное стекло с подсветкой, но это совсем из далеких планов.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Операционный усилитель

LM324

1 В блокнот
U2 Линейный регулятор

LM317

1 В блокнот
Q1 Биполярный транзистор

2N2222A

1 В блокнот
Q2 MOSFET-транзистор

AO4407A

1 В блокнот
D1, D2 Выпрямительный диод

1N4148

2 В блокнот
D3 Выпрямительный диод

1N4007

1 В блокнот
С1 Конденсатор 2.2 нФ 1 В блокнот
С2, С4, C6 Конденсатор 0.1 мкФ 3 В блокнот
С3 Конденсатор 1 мкФ 1 В блокнот
С5 Конденсатор 220 мкФ Х 35В 1 В блокнот
С7 Конденсатор 10 мкФ Х 16В 1 В блокнот
С8 Конденсатор 0.33 мкФ 1 В блокнот
R1 Резистор

8.2 кОм

1 В блокнот
R2 Резистор

1.5 кОм

1 В блокнот
R3 Резистор

75 Ом

1 В блокнот
R4 Резистор

120 кОм

1 В блокнот
R5, R6 Резистор

Объяснять, насколько необходима паяльная станция для работы и ремонта современного электронного оборудования, скорее всего, не стоит, только время тратить. К сожалению, даже самые бюджетные варианты подобного оборудования стоят немалые деньги, от 10 тыс. рублей и выше, поэтому для работы в домашних условиях приходится искать варианты изготовления паяльной станции своими руками. Дело это непростое, требующее терпения в отладке и настройке управляющей компоненты паяльной станции.

Варианты постройки паяльной станции

Среди всякого полезного и не очень набора информации, имеющегося в сети, можно отыскать массу схем и устройств самодельной разработки, вплоть до вариантов изготовления самодельных термопар и фенов. На практике, для перепайки и прогрева электронных компонентов материнских плат и видеокарт компьютеров, станций управления и прочей микропроцессорной техники чаще всего используют два типа установки:

  • Конструкция, работающая на принципе передачи тепла раскаленным воздухом. Собирается такая термовоздушная паяльная станция своими руками достаточно просто, но при одном условии, большую часть компонентов необходимо покупать готовыми, а не пытаться сделать кустарным способом;
  • Бесконтактная установка работает по принципу теплового излучателя. Инфракрасная паяльная станция своими руками собирается на основе мощных галогеновых ламп и системы отражателей. Для управления нагревом используются программные возможности ноутбука.

Самой крутой паяльной станцией, работоспособность которой подтверждена на практике, признана установка, изготовленная из отражательного зеркала и мощной галогеновой лампы на 500Вт.

К сведению! При правильной настройке такой паяльной станцией удалось выполнить пайку контактов твердым серебряным припоем.

Но для пайки или прогрева такой девайс будет смертельно опасен, потому что главным критерием при выборе варианта паяльной станции должна быть управляемость нагрева поверхности с точностью до 1 о С.

Строим воздушную паяльную станцию малой мощности

Конструкция паяльной станции состоит из четырех основных элементов:

  • Платы управления процессом нагрева;
  • Корпуса;
  • Блока питания;
  • Фена и паяльника.

Блок питания и корпус подбирают в соответствии с имеющимися ресурсами. Остальные узлы придется покупать или делать собственноручно.

Главный рабочий инструмент воздушной паяльной станции

Главным рабочим органом паяльной станции является фен с электрической спиралью и кулером, продувающий горячий воздух на поверхность пайки или микрочипа. Устройство его несложное, и при желании можно намотать нихровомовую спираль от обыкновенного низковольтного паяльника на керамическую трубку.

Нагревательный элемент изолируют несколькими слоями стеклоткани. Нихром не будет нагреваться до состояния раскаленного металла, но заизолировать поверхность необходимо хотя бы для того, чтобы металлическая поверхность не окислялась. На выходе из нагревательного устройства необходимо установить керамическое кольцо или сопло, диаметром 8-10 мм. Лучше всего подойдут термостойкие фишки, фиксирующие нагревательные спирали в старых утюгах. Мощность нагревателя для паяльной станции потребуется в пределах 400-500Вт, не менее.

Для организации наддува можно использовать кулер от компьютера, или взять за основу корпус с двигателем и вентилятором от походного фена. Но в этом случае придется разрабатывать свой вариант управления оборотами двигателя и напором воздушного потока.

Совет! Существует немало схем с ручным управлением, в которых подачу воздуха в нагревательный элемент предлагают организовать с помощью вынесенного компрессора.

Из практики можно сказать, что управление подачей воздуха паяльной станции должно быть только автоматическим, в противном случае включение-выключение клапана перепуска давления сделает процесс пайки настоящей мукой, а не работой.

Кроме того, в конструкции фена должна быть установлена термопара, с помощью которой, собственно, и регулируется температура воздуха.

Схему подключения фена можно выполнить так, как указано на рисунке ниже.

От того, насколько удобным и безопасным в работе получится конструкция фена, зависит качество пайки, поэтому, если у вас нет желания морочить голову самоделками, то можно купить обычный фен от настольной паяльной станции Luckey, модель702, и просто адаптировать ее к плате управления.

Система управления паяльной станцией

Из приведенного списка наиболее сложным узлом паяльной станции для постройки своими руками является плата управления. Ее можно купить готовой, но если есть опыт постройки подобных конструкций, схему вполне по силам собрать своими руками, комплект деталей можно заказать в сети.

Из всех существующих вариантов, доступных в онлайне, наиболее надежной и удобной в работе признана схемка на основе контролера ATMEGA серия 328р. Плата собрана на основе по приведенной ниже схеме.

Сборка выполняется на стеклотекстолитовой плате, и при нормальном качестве монтажа система управления паяльной станции запускается с первой попытки. При сборке платы потребуется крайне осторожно выполнять пайку элементов, особенно питающей цепи чипа, сделать землю и постараться не переусердствовать с нагревом ножек. Но, прежде всего, нужно будет программатором забить программный код управления. В качестве блока питания паяльной станции используется импульсник на 24В-6А со встроенной защитой от перегрузки.

В схеме управления паяльной станции используется пара мощных мосфетов IRFZ44N, нужно предпринять меры по защите от перегрева и выгорания. Если нагреватель фена получился чересчур мощным, вполне возможно срабатывание блокировки блока питания.

Симмистор и оптоэлектронную пару желательно вывести на отдельную плату, и обязательно установить радиатор охлаждения. Для оптопары рекомендуется использовать сравнительно маломощные светодиоды управления с максимальным током потребления до 20 миллиампер.

В конструкции паяльной станции используется пятипиновый паяльник мощностью в 50 Вт. Разработчики рекомендуют использовать Arrial 936, но можно установить любой аналогичный инструмент с предустановленной термопарой.

Сборка и регулировка работы станции

Все элементы монтируются в закрытый штамповый корпус от старого блока питания, на заднюю стенку выносится радиатор и включатель, на передней индикатор температуры.

Управление паяльной станцией осуществляется тремя переменными сопротивлениями на 10 кОм Первыми двумя регулируется температура паяльника и фена, третьим выставляются обороты фенового вентилятора.

Процесс регулировки касается только юстирования на плате паяльной станции температуры нагрева паяльника и фена. Для этого подключаем питание к паяльнику и термопарой с тестером измеряем реальную температуру нагрева жала. Далее подстроечным резистором выводим показание на цифровом индикаторе станции в соответствии с данными тестера. Аналогичным способом измеряем температуру воздушного потока фена и регулируем подстроечником показания на индикаторе. Если задрать обороты вентилятора фена, то место пайки можно легко разогреть до 450 о С.

Изготовление инфракрасного паяльника

Паяльные станции, работающие на инфракрасном излучении, за редким исключением, используются для прогрева распаявшегося процессора, моста или проца на видеокарте. Как известно, процессоры очень плохо переносят перегрев, и зачастую, при интенсивной нагрузке и плохом теплоотводе, происходит распаивание низкотемпературного припоя контактов от площадки.

Одним из варварских способов восстановления контакта является прогрев «тела» процессора дозированным тепловым излучение. Это можно сделать обычным феном или даже утюгом, но после подобных процедур положительный эффект достигается в одном из трех случаев. Поэтому специалисты-самодельщики предпочитают строить паяльные станции инфракрасного нагрева.

Изготовление корпуса и нагревательных элементов

Конструктивно паяльная станция состоит из четырех основных элементов:

  • Нижнего нагревательного блока;
  • Верхнего нагревательного блока;
  • Штатива и блока управления нагревателями.

Между верхним и нижним корпусом укладывается материнская плата компьютера так, чтобы инфракрасный поток от верхней системы нагрева был направлен преимущественно на цель — корпус процессора. Остальная часть платы закрывается от нагрева алюминиевой пластиной или фольгой с вырезанным окном под процессор.

Нижний корпус паяльной станции применяется для создания теплового экрана, проще говоря, для дополнительного подогрева платы, чтобы уменьшить потери тепла за счет конвекции воздуха.

Важно! Вся хитрость паяльной станции заключается в том, чтобы сделать нагрев не только эффективным, но и управляемым, то есть, нельзя допустить перегрева корпуса, поэтому в конструкции используется термопара и интерфейс управления галогенками.

В качестве нагревателей можно использовать обыкновенную нихромовую спираль, уложенную внутрь кварцевых трубок или галогенки R7S J254.

Для изготовления корпуса нижнего блока можно использовать любой подходящий по размеру стальной коробок, на который устанавливаются разъемы для ламп. В итоге, после сборки и подключения проводки получается конструкция паяльной станции, как на фото.

Аналогичным способом изготавливается верхний нагревательный блок.

Все устройство и управление монтируется на штативе от старого советского фотоувеличителя, у которого есть регулировка положения верхнего блока по высоте. Остается собрать систему управления паяльной установки.

Термопары и управление

Для того чтобы не допустить перегрева, в паяльной станции используются две термопары - для корпуса процессора и остальной поверхности материнской платы. Для управления паяльной станцией используется плата интерфейса Arduino MAX6635, которая подключается к последовательному порту домашнего ноутбука или ПК, для которого приходится искать соответствующее программное наполнение -обеспечение или сделать его самому.

Управление паяльной станции выполняется следующим образом. Компьютер через интерфейс и термопару получает информацию о температуре и меняет мощность теплового потока с помощью импульсов включения-выключения галогенок станции. По мере перегрева продолжительность периода горения лампы будет снижена, а при остывании, наоборот, увеличена.

В собранном виде паяльная станция выглядит, как на фото. Стоимость постройки обошлась чуть более 80 долл.

Заключение

Существует еще как минимум четыре варианта изготовления паяльной установки, в том числе один из них аккумуляторного типа. Какой из них наиболее удобный в управлении, можно установить только практическим способом, после постройки паяльника в натуральную величину. Две приведенные в статье схемы паяльной системы являются самыми простыми и доступными в изготовлении при весьма скромном бюджете в 150 дол.

Привет ВСЕМ! Пополняем свою лабораторию самодельным инструментом - на этот раз это будет самодельная цифровая паяльная станция DSS. До этого у меня ничего подобного не было, поэтому и не понимал, в чем ее плюсы. Пошарив по интернету, на форуме «Радиокота» нашел схему, в которой использовался паяльник от паяльной станции Solomon или Lukey.

До этого все время паял таким паяльником, с понижающим блоком, без регулятора и естественно без встроенного термо-датчика:

Для будущей своей паяльной станции, прикупил уже современный паяльник со встроенным термо-датчиком (термопарой) BAKU907 24V 50W. В принципе подойдёт любой паяльник, какой Вам нравится, с термо-датчиком и напряжением питания 24 вольта.

И пошла потихоньку работа. Распечатал печатку для ЛУТ на глянцевой бумаге, перенёс на плату, протравил.

Сделал также рисунок для обратной стороны платы, под расположение деталей. Так легче паять, ну и выглядит красиво.


Плату делал размером 145х50 мм, под покупной пластиковый корпус, который уже был приобретён ранее. Впаял пока детали, какие были на тот момент в наличии.

R1 = 10 кОм
R2 = 1,0 МОм
R3 = 10 кОм
R4 = 1,5 кОм (подбирается)
R5 = 47 кОм потенциометр
R6 =120 кОм
R7 = 680 Ом
R8 = 390 Ом
R9 = 390 Ом
R10 = 470 Ом
R11 = 39 Ом
R12 =1 кОм
R13 = 300 Ом (подбирается)
C1 = 100нФ полиэстр
C2 = 4,7 нф керамика, полиэстр
C3 = 10 нФ полиэстр
C4 = 22 пф керамика
C5 = 22 пф керамика
C6 = 100нФ полиэстр
C7 = 100uF/25V электролитический
C8 = 100uF/16V электролитический
C9 = 100нФ полиэстр
С10 = 100нФ полиэстр
С11 = 100нФ полиэстр
С12 = 100нФ полиэстр
Т1 = симистор ВТ139-600
IC1 = ATMega8L
IC2 = отпрон МОС3060
IC3 = стабилизатор на 5 v 7805
IC4 = LM358P опер. усилитель
Cr1 = кварц 4 мГц
BUZER = сигнализатор МСМ-1206А
D1 = светодиод красный
D2 = светодиод зелёный
Br1 = мост на 1 А.

Для компактности плату сделал так, что Mega8 и LM358 будут располагаться за дисплеем (во многих своих поделках использую такой метод - удобно).


Плата, как уже говорил, имеет размер по длине 145мм, под готовый пластиковый корпус. Но это на всякий случай, т.к пока ещё не было силового трансформатора и в основном от него зависело, каким будет окончательный вариант корпуса. Или это будет корпус БП от компьютера, если трансформатор не влезет в пластиковый корпус, или если влезет, то готовый пластиковый покупной. По этому поводу заказал через интернет трансформатор ТОР 50Вт 24В 2А (они мотают на заказ).


После того, как трансформатор оказался дома, сразу стал ясен окончательный вариант корпуса для паяльной станции. По габаритам вполне должен был влезть в пластик. Примерил его в пластиковый корпус - по высоте подходит, даже есть небольшой запас.


Как уже говорил, что когда разрабатывал плату, то в первую очередь, конечно, учитывал размеры пластикового корпуса, поэтому плата в него подошла без проблем, только пришлось подрезать немного углы.


Переднюю панель для паяльной станции, как и в других своих поделках, сделал из акрила (оргстекла) 2мм. По оригинальной заглушке сделал свою. Пленку до окончания работы не снимаю, чтоб лишний раз не поцарапать.



Контроллер прошил, плату собрал. Пробные подключения готовой платы (пока без паяльника) прошли успешно.

ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!". Плата разводилась под LCD Winstar WH1602D. Даже у этого производителя у дисплеев между B и D есть разница.
На схеме индикатор, на вывод 1 которого подаётся +5V, а вывод 2 - общий!
Ваш индикатор может отличаться цоколёвкой этих выводов (1- общий; 2 - +питания).

Собираю все составные части паяльной станции в одно целое. Для паяльника поставил «Соломоновский» разъём (гнездо).

Подошло время для подключения самого паяльника и тут облом - разъём. Изначально в паяльнике был установлен такой разъём.

Пошёл в магазин за разъёмом. В магазинах у нас в городе ответной части не нашел. Поэтому в станции гнездо оставил, какое было, а на паяльнике разъём перепаял на наш советский от магнитофонов (СГ-5 вроде, или СР-5). Идеально подходит.

Теперь упаковываем всё в корпус, крепим окончательно трансформатор, переднюю панель, делаем все соединения.


Наша конструкция приобретает законченный вид. Получилась не большой, на столе займёт не много места. Ну и финальные фото.


Как работает станция, можно посмотреть это видео, которое я скинул на Ютюб.

Если будут какие нибудь вопросы по сборке, наладке - задавайте их , по возможности постараюсь ответить.

P.S.
По наладке:

1. Определить где у паяльника нагреватель, а где термопара. Померить омметром сопротивление на выводах, там где сопротивление меньше, там и будет термопара (нагреватель обычно имеет сопротивление выше термопары, у термопары сопротивление единицы Ом). У термопары соблюсти полярность при подключении.
2. Если сопротивление у измеренных выводов практически не отличается (мощный керамический нагреватель), то определить термопару и её полярность,можно следующим способом;
- нагреть паяльник, отключить его и цифровым мультиметром на самом малом диапазоне (200 милливольт) замерить напряжение на выводах паяльника. На выводах термопары будет напряжение несколько милливольт, полярность подключения будет видна на мультиметре.
3. Если на всех выводах паяльника измеренное сопротивление (попарно) больше 5-10-ти Ом (и более) на двух парных выводах (нагреватель и искомая термопара), то возможно у паяльника вместо термопары стоит терморезистор. Определить его можно с помощью омметра, для этого измеряем сопротивления на выводах, запоминаем, затем нагреваем паяльник. Снова измеряем сопротивление. Там где величина показаний изменится (от запомненного), там и будет терморезистор.
Ниже на рисунке показана распиновка разъёма "Соломоновского" паяльника

4. Подобрать значение R4.

В прикреплённом архиве находятся все необходимые файлы.

Архив для статьи

В интернете очень много схем различных паяльных станций, но у всех есть свои особенности. Одни сложны для новичков, другие работают с редкими паяльниками, третьи не закончены и т.д. Мы сделали упор именно на простоту, низкую стоимость и функциональность, чтобы каждый начинающий радиолюбитель смог собрать такую паяльную станцию.

Для чего нужна паяльная станция

Обычный паяльник, который включается напрямую в сеть просто греет постоянно с одинаковой мощностью. Из-за этого он очень долго разогревается и никакой возможности регулировать температуру в нем нет. Можно диммировать эту мощность, но добиться стабильной температуры и повторяемости пайки будет очень сложно.
Паяльник, подготовленный для паяльной станции имеет встроенный датчик температуры и это позволяет при разогреве подавать на него максимальную мощность, а затем удерживать температуру по датчику. Если просто пытаться регулировать мощность пропорционально разности температур, то он будет либо очень медленно разогреваться, либо температура будет циклически плавать. В итоге программа управления обязательно должна содержать алгоритм ПИД-регулирования.
В своей паяльной станции мы, конечно, использовали специальный паяльник и уделили максимум внимания стабильности температуры.

Технические характеристики

  1. Питание от источника постоянного напряжения 12-24В
  2. Потребляемая мощность, при питании 24В: 50Вт
  3. Сопротивление паяльника: 12Ом
  4. Время выхода на рабочий режим: 1-2 минуты в зависимости от питающего напряжения
  5. Предельное отклонение температуры в режиме стабилизации, не более 5ти градусов
  6. Алгоритм регулирования: ПИД
  7. Отображение температуры на семисегментном индикаторе
  8. Тип нагревателя: нихромовый
  9. Тип датчика температуры: термопара
  10. Возможность калибровки температуры
  11. Установка температуры при помощи экодера
  12. Светодиод для отображения состояния паяльника (нагрев/работа)

Принципиальная схема

Схема предельно простая. В основе всего микроконтроллер Atmega8. Сигнал с оптопары подается на операционный усилитель с регулируемым коэффициентом усиления (для калибровки) и затем на вход АЦП микроконтроллера. Для отображения температуры использован семисегментный индикатор с общим катодом, разряды которого включены через транзисторы. При вращении ручки энкодера BQ1 задается температура, а в остальное время отображается текущая температура. При включении задается начальное значение 280 градусов. Определяя разницу между текущей и требуемой температурой, пересчитав коэффициенты ПИД-составляющих, микроконтроллер при помощи ШИМ-модуляции разогревает паяльник.
Для питания логической части схемы использован простой линейный стабилизатор DA1 на 5В.

Печатная плата

Печатная плата односторонняя с четырьмя перемычками. Файл печатной платы можно будет скачать в конце статьи.

Список компонентов

Для сборки печатной платы и корпуса потребуются следующие компоненты и материалы:

  1. BQ1. Энкодер EC12E24204A8
  2. C1. Конденсатор электролитический 35В, 10мкФ
  3. C2, C4-C9. Конденсаторы керамические X7R, 0.1мкФ, 10%, 50В
  4. C3. Конденсатор электролитический 10В, 47мкФ
  5. DD1. Микроконтроллер ATmega8A-PU в корпусе DIP-28
  6. DA1. CСтабилизатор L7805CV на 5В в корпусе TO-220
  7. DA2. Операционный усилитель LM358DT в корпусе DIP-8
  8. HG1. Семисегментный трехразрядный индикатор с общим катодом BC56-12GWA.Также на плате предусмотрено посадочное место под дешевый аналог .
  9. HL1. Любой индикаторный светодиод на ток 20мА с шагом выводов 2,54мм
  10. R2,R7. Резисторы 300 Ом, 0,125Вт — 2шт
  11. R6, R8-R20. Резисторы 1кОм, 0,125Вт — 13шт
  12. R3. Резистор 10кОм, 0,125Вт
  13. R5. Резистор 100кОм, 0,125Вт
  14. R1. Резистор 1МОм, 0,125Вт
  15. R4. Резистор подстроечный 3296W 100кОм
  16. VT1. Полевой транзистор IRF3205PBF в корпусе TO-220
  17. VT2-VT4. Транзисторы BC547BTA в корпусе TO-92 — 3шт
  18. XS1. Клемма на два контакта с шагом выводов 5,08мм
  19. Клемма на два контакта с шагом выводов 3,81мм
  20. Клемма на три контакта с шагом выводов 3,81мм
  21. Радиатор для стабилизатора FK301
  22. Колодка для корпуса DIP-28
  23. Колодка для корпуса DIP-8
  24. Выключатель питания SWR-45 B-W(13-KN1-1)
  25. Паяльник . О нем мы еще позже напишем
  26. Детали из оргстекла для корпуса (файлы для резки в конце статьи)
  27. Ручка энкодера. Можно купить ее, а можно напечатать на 3D-принтере. Файл для скачивания модели в конце статьи
  28. Винт М3х10 — 2шт
  29. Винт М3х14 — 4шт
  30. Винт М3х30 — 4шт
  31. Гайка М3 — 2шт
  32. Гайка М3 квадратная — 8шт
  33. Шайба М3 — 8шт
  34. Шайба М3 гроверная — 8шт
  35. Также для сборки потребуются монтажные провода, стяжки и термоусадочная трубка

Вот так выглядит комплект всех деталей:

Монтаж печатной платы

При сборке печатной платы удобно пользоваться сборочным чертежом:

Подробно процесс монтажа будет показан и прокомментирован в видео ниже. Отметим только несколько моментов. Необходимо соблюдать полярность электролитических конденсаторов,светодиода и направление установки микросхем. Микросхемы не устанавливать до тех пор, пока корпус полностью не собран и не проверено питающее напряжение. С микросхемами и транзисторами необходимо обращаться аккуратно, чтобы не повредить их статическим электричеством.
После того, как плата собрана, она должна выглядеть вот так:

Сборка корпуса и объемный монтаж

Монтажная схема блока выглядит следующим образом:

То есть осталось всего навсего подвести к плате питание и подключить разъем паяльника.
К разъему паяльника требуется припаять пять проводов. К первому и пятому красные, к остальным черные. На контакты надо сразу надеть термоусадочную трубку, а свободные концы проводов залудить.
К выключателю питания следует припаять короткий (от переключателя к плате) и длинный (от переключателя к источнику питания) красные провода.
Затем выключатель и разъем можно установить на лицевую панель. Обратите внимание, что выключатель может входить очень туго. При необходимости доработайте лицевую панель надфилем!

На следующем этапе все эти части собираются вместе. Устанавливать контроллер, операционный усилитель и прикручивать лицевую панель не нужно!

Прошивка контроллера и настройка

HEX-файл для прошивки контроллера вы сможете найти в конце статьи. Фьюз-биты должны остаться заводскими, то есть контроллер будет работать на частоте 1МГц от внутреннего генератора.
Первое включение следует производить до установки микроконтроллера и операционного усилителя на плату. Подайте постоянное напряжение питания от 12 до 24В (красный должен быть "+", черный "-") на схему и проконтролируйте, что между выводами 2 и 3 стабилизатора DA1 присутствует напряжение питания 5В (средний и правый выводы). После этого отключите питание и установите микросхемы DA1 и DD1 в панельки. При этом следите за положением ключа микросхем.
Снова включите паяльную станцию и убедитесь, что все функции работают правильно. На индикаторе отображается температура, энкодер ее изменяет, паяльник нагревается, а светодиод сигнализирует о режиме работы.
Далее необходимо откалибровать паяльную станцию.
Оптимальный вариант при калибровке – использование дополнительной термопары. Необходимо выставить требуемую температуру и проконтролировать ее на жале по эталонному прибору. Если показания различаются, то произведите подстройку многооборотным подстроечным резистором R4.
При настройке помните, что показания индикатора могут отличаться незначительно от фактической температуры. То есть, если вы установили, например, температуру "280", а показания индикатора в небольшой степени отклоняются, то по эталонному прибору вам нужно добиваться именно температуры 280°С.
Если под рукой нет контрольного измерительного прибора, то можно установить сопротивление резистора около 90кОм и потом подбирать температуру опытным путем.
После того, как паяльная станция проверена, можно аккуратно, чтобы не потрескались детали, установить лицевую панель.

Видео работы

Мы сняли краткое видео-обзор

…. и подробное видео, на котором показан процесс сборки:

Паяльная станция или установка - это агрегат, относящийся к классу специального оборудования и предназначаемый для выполнения пайки единичного или группового типа. Своими руками изготовить этот вид установки вполне возможно, если придерживаться определённых правил и следовать грамотной пошаговой инструкции.

Что такое паяльная станция

От точности соблюдения условий пайки напрямую зависит качество шовного соединения, поэтому данные работы чаще всего выполняются при помощи специального оборудования - паяльной станции, значительно упрощающей процесс пайки.

Выпускаемые на сегодняшний день паяльные станции могут включать в себя несколько важных компонентов, представленных:

  • контрольно-управляющим модулем в виде специального прибора, контролирующего параметры и режимы работы оборудования;
  • паяльником, используемым при пайке с припоем в условиях низкого температурного режима;
  • термопинцетом, облегчающим монтаж и демонтаж, а также ремонт микроэлементов и SMD-компонентов;
  • феном для локального прогрева или групповой пайки;
  • мощным тепловым источником для нагрева платы в групповой пайке;
  • узконаправленным тепловым излучателем для локального нагрева платы в групповой пайке;
  • пневматическими агрегатами в виде вакуумного пинцета и специального оловоотсоса;
  • вспомогательной арматурой и принадлежностями в виде подставки, держателя, рамки и стойки, антистатических браслетов и специального коврика.

В минимальную комплектацию станции входит паяльник с контрольно-управляющим модулем и пружинным держателем. Основным отличием паяльной установки от бытового паяльника является возможность регулирования и поддержания заданного температурного режима, повышение безопасности эксплуатации благодаря наличию в конструкции держателя. Самые современные модели имеют антистатическое исполнение.

Минимальная комплектация включает паяльник и управляющий модуль

Для чего нужна

Паяльные станки или установки применяются, преимущественно в радиотехнике, а область использования таких современных приборов представлена:

  • пирографией;
  • сваркой пластмасс;
  • монтажом, ремонтом и другими производственными работами;
  • сборкой электронного оборудования и электрических приборов;
  • пайкой электронных компонентов в электронике и электромеханике;
  • пайкой и лужением массивных деталей и металлических элементов;
  • высокоточной сваркой и ремонтом пластмассовых изделий;
  • качественной и быстрой бесконтактной пайкой и распайкой SMD;
  • пайкой элементов, представленных микросхемами и радиодеталями;
  • усадкой термоусадочных труб и муфт.

Основным назначением этого паяльного устройства является единичная или групповая пайка в промышленных условиях, а оригинальная конструкция станции облегчает демонтаж и монтаж электронных элементов.

Основные виды

Паяльные станции имеют существенные отличия по функциональным возможностям и, конечно, их стоимости. Классификация таких устройств определяется сразу несколькими основными параметрами.

Контактные станции

Традиционное паяльное оборудование, отличающееся прямым контактом с рабочей поверхностью. Устройство имеет специальный электронный блок для управления и регулировки температурного режима. Паяльный прибор представлен парой подвидов, которые предназначены для работы со свинцовыми и бессвинцовыми припоями. Бесконтактные паяльные установки представлены тремя разновидностями, отличающимися принципом действия.

Устройство состоит из электронного блока для управления и контроля температуры

Термовоздушные устройства

Современные термовоздушные фены, работающие на основе сильного воздушного потока, генерируемого компрессором и затем прогреваемого нагревательной спиралью до нужного температурного режима. Термовоздушные станции позволяют выполнять эффективную пайку на самых труднодоступных участках с единовременным прогревом нескольких поверхностей.

В этой установке компрессором генерируется воздушный поток, который потом нагревается до нужной температуры

Инфракрасные приборы

Инфракрасные модели характеризуются наличием специального нагревательного кварцевого или керамического ИК-излучателя, что позволяет осуществлять пайку сложных профильных элементов с равномерным прогревом рабочей зоны.

Инфракрасные станции представлены кварцевым или керамическим излучателем

Конструкция комбинированных паяльных станций очень удачно сочетает в себе сразу несколько видов оборудования, а наличие ручки энкодера позволяет легко задавать оптимальный температурный режим.

Выпускаемые в настоящее время паяльные станции или установки представлены монтажными и демонтажными, а также комбинированными и ремонтными моделями:

  • монтажные установки предназначены для пайки деталей;
  • демонтажные станции позволяют отпаивать элементы;
  • комбинированные приборы способны выполнять монтажно-демонтажные работы;
  • ремонтные паяльные станции осуществляют единовременные или автономные операции, связанные с пайкой.

В зависимости от особенностей механизма, стабилизирующего температурный режим, а также типовых характеристик управляющих блоков, паяльные станции представлены аналоговыми и цифровыми моделями.

Аналоговые модели обладают нагревательным элементом, находящимся во включённом положении до момента достаточного прогрева, после чего питание установки отключается. После понижения температурного режима до выставленных показателей происходит очередной разогрев нагревательного элемента. Этот вид отличает вполне доступная цена, а к минусам относится низкая точность выполняемой пайки.

Минусом аналоговых станций является не очень точная пайка элементов

Цифровые паяльные станции характеризуются контролем и управлением нагревательного процесса при помощи PID-регулятора и программы, заложенной в микроконтроллере. Такие устройства отлично стабилизируют температурный режим и являются наиболее точными, по сравнению с любыми аналоговыми моделями.

Цифровые устройства оснащены специальным регулятором и программой, которая позволяет им управлять

Простая паяльная станция своими руками

Собрать самостоятельно максимально простую и достаточно надёжную паяльную установку вполне возможно. Для этого достаточно приобрести минимальный набор материалов, а также подготовить рабочие инструменты и выбрать правильную схему изготовления станции своими руками.

Необходимые инструменты и материалы

Самым простым вариантом для изготовления своими руками станет паяльная термовоздушная установка, собранная на основе традиционного паяльника.

Схема и элементы паяльной лампы

Необходимые материалы и инструменты для самостоятельного изготовления представлены:

  • паяльником с рукоятью из древесины;
  • аквариумным компрессором;
  • шуруповёртом;
  • сверлом;
  • медицинской капельницей;
  • фольгой;
  • небольшой частью антенны;
  • многожильным кабелем.

Чаще всего в изготовлении применяются заводские модули, а при необходимости может быть разработана собственная схема на основе доступных по цене готовых компонентов.

Пошаговая инструкция

После того как будет подготовлен весь необходимый для изготовления материал и инструмент, следует приступить к самостоятельной сборке прибора.

Подготовить к работе все необходимые инструменты

  1. Демонтаж рукояти и откручивание проводов, соединяющих нагревательный элемент с питающим кабелем.

    Снять рукоять паяльника

  2. Провод протаскивается через рукоятку, после чего в боковой части осторожно высверливается небольшое отверстие.

    Сделать в ручке отверстие

    В высверленное в рукояти отверстие необходимо вставить и протянуть питающий провод, привязанный к небольшому кусочку проволоки, после чего часть капельницы с резинкой разрезается строго пополам.

    Разрезать часть капельницы пополам

    Оставшуюся часть капельницы, оснащённую трубочкой, следует аккуратно вставить в рукоять инструмента, на место расположения питающего провода.

    Часть капельницы вставить в рукоять паяльника

    Полученное соединение отличается высокой надёжностью и абсолютной герметичностью, что позволяет подключить к питающему проводу изъятый на первом этапе нагревательный элемент.

    Подключить нагревательный элемент

    Участки соединений на проводах должны быть качественно заизолированы, после чего все охлаждающие отверстия нагревательного элемента тщательно обматываются обычной фольгой.

    Установить сопло

    Отверстие, сквозь которое проходит питающий провод, требуется тщательно загерметизировать, после чего подключается стандартный аквариумный компрессор. Готовая термовоздушная паяльная установка способна обеспечивать накал в пределах 300–310 градусов, что является вполне достаточным показателем для проведения работ с самыми мелкими элементами плат. С целью повышения уровня мощности выполняется намотка на нагревательный элемент обычной нихромовой нити и осуществляется установка более производительного компрессора.

Меры предосторожности

С целью обеспечения безопасной эксплуатации паяльной станции необходимо чётко следовать прилагаемой производителем инструкции:

  • прежде чем приступить к работе с антистатической паяльной установкой, необходимо убедиться в нормальном, рабочем состоянии электрического питания;
  • следует оградить устройство от любых тяжёлых механических воздействий, вызывающих повреждения прибора;
  • паяльная станция любого вида должна использоваться исключительно по своему прямому назначению;
  • нельзя осуществлять работу паяльной станцией вблизи быстро и легковоспламеняющихся предметов;
  • запрещается в процессе работы контактировать с насадкой фена, жалом паяльника или смежными с ними частями;
  • ремонтные работы и замена элементов в паяльной установке осуществляются только после отключения прибора от сети и его полного остывания;
  • нельзя работать с электроинструментом мокрыми руками;
  • прибор должен храниться в недоступном для детей месте.

Если в процессе пайки с поверхности выделяется дым, то работы должны осуществляться только в хорошо проветриваемых помещениях.

Ремонт и эксплуатация

Работа в условиях пониженных токовых вличин предотвращает накапливание статического напряжения на жале паяной станции, поэтому ремонт мелких деталей таким инструментом является самым оптимальным вариантом. Основные правила работы с паяльной станцией следующие:

  • расположение компонентов на держателе;
  • подключение шнура и кабеля питания;
  • установка на ручку необходимой насадки;
  • включение питания и настройка температурного режима;
  • выполнение технологических процессов.

После завершения работы прибор для пайки укладывается на специальном держателе. Затем производится отключение паяльной станции от электросети.

Таблица поиска неисправностей, как правило, отражается в прилагаемой к прибору инструкции. К наиболее частым неисправностям прибора для пайки относятся:

  • выход из строя вилки электрического прибора;
  • выход из строя кабеля, подающего электроэнергию;
  • нарушения контакта между нагревательным элементом и сетевым кабелем;
  • поломка нагревательного элемента.

Неисправности, связанные с электронной схемой паяльных установок, встречаются достаточно редко и чаще всего бывают обусловлены поломкой электронных компонентов. Ремонт вышедших из строя многофункциональных монтажных и демонтажных паяльных станций, а также ремонтных любых паяльных установок должен выполняться только квалифицированными специалистами, способными правильно определить причину неполадок в работе электроприбора.

В бытовых условиях чаще всего используются портативные паяльные установки, очень хорошо поддерживающие стабильный температурный режим нагрева поверхности. Именно такие условия особенно важны при выполнении работы с платами или микросхемами, обладающими повышенной чувствительностью к перегревам, включая компьютеры, музыкальную аппаратуру, контроллеры и другие современные электротехнические изделия.